
A cross-technology benchmark
for incremental graph queries

Presenter: Gábor Szárnyas (CWI Amsterdam)

Software and Systems Modeling 2022 | MODELS 2022 J1 track

Georg Hinkel, Antonio Garcia-Dominguez, René Schöne, Artur Boronat,
Massimo Tisi, Théo Le Calvar, Frederic Jouault, József Marton, Tamás Nyíri,

János Benjamin Antal, Márton Elekes, Gábor Szárnyas

TTC 2018 “Social media” case

https://www.transformation-tool-contest.eu/2018/

“Social media” case

Social network graph

Score posts and comments

New entities are inserted

Keep query results up-to-date

Data

Queries

Changes

Goal

u1

c4

p2

u2 c3

c5u3

replyOf
likes

p1

c1

c2

Score: 23

friends

Score: 32
Score: 22

Score = 10 × #comments + #likes

Scoring posts

Score: 22

p2p1

Scoring comments

u1

c4

p2

u2 c3

c5u3

replyOf

p1

c1

c2

friends
likes

For each comment, find connected components
of users who liked the comment

c4

p2

c3

c5

p1

c1

c2

friends
likes

u1

u2

u3

Scoring comments

replyOf

Score = Σ (component size)2

c4

p2

c3

c5

p1

c1

c2

friends
likes

u1

u2

u3

connected components

Scoring comments

replyOf

Score = Σ (component size)2 = 12 + 12 = 2

c4

p2

c3

c5

p1

c1

c2

friends
likes

u1

u2

u3

connected components

Scoring comments

replyOf

Score = Σ (component size)2 = 12 + 12 = 2

c4

p2

c3

c5

p1

c1

c2

friends
likes

u1

u2

u3

connected components

Scoring comments

replyOf

Score = Σ (component size)2 = 32 = 9

Solutions

Solution Data model Variants

Active Operations Framework EMF 1

ATL EMF 2

Hawk EMF 3

JastAdd EMF 2

Xtend EMF 1

YAMTL EMF 3

NMF NMF 2

Differential Dataflow relational 1

PostgreSQL relational 2

Neo4j graph 2

GraphBLAS matrix 2

21 solutions in total

Most solutions use the
Eclipse Modeling Framework

DBMSs

Non-incremental query formulation
Examples of the how the initial query evaluation is formulated in:

● NMF
● Neo4j
● PostgreSQL

Note: Implementations can be quite complex – this is a “programming contest”

NMF
post.Descendants()

Neo4j (Cypher)
MATCH (p:Post)

OPTIONAL MATCH (p)<-[:REPLY_OF*]-(c:Comment)

PostgreSQL (SQL:1999)
WITH RECURSIVE

 comments_with_ancestors(id, ancestorid) AS (

 SELECT c.id, c.parentid AS ancestorid

 FROM comments c

 UNION

 SELECT cr.id, c.parentid AS ancestorid

 FROM comments_with_ancestors cr

 , comments c

 WHERE cr.ancestorid = c.id)

Scoring posts

u1

c4

p2

u2 c3

u3

likes
friends replyOf

Traversing the Submission tree

Score = 10 × #comments + #likes

NMF: Tarjanʼs algorithm
let layering = Layering<IUser>.CreateLayers(
 comment.LikedBy,
 u => u.Friends.Intersect(comment.LikedBy))
let score = layering.Sum(l => Square(l.Count))

Neo4j: User-defined function
MATCH (c:Comment) WHERE (c)<-[:LIKES]-(:User)

CALL gds.wcc.stream({

 nodeQuery:

 "MATCH (c:Comment)<-[:LIKES]-(u:User)

 WHERE id(c)=" + id(c) + "

 RETURN id(u) AS id",

 relationshipQuery:

 "MATCH (u1:User)<-[:FRIENDS]->(u2:User)

 RETURN id(u1) AS source, id(u2) AS target",

 validateRelationships: false

})

YIELD componentId

...

Scoring comments

Finding connected components of Users

c3

friends
likes

u1

u2

u3

Score = Σ (component size)2

PostgreSQL: Simplified SQL query

WITH RECURSIVE
 comment_friends(commentid, user1id, user2id) AS (...),
 comment_friends_closed(commentid, head_userid, tail_userid) AS
 SELECT l.commentid
 , l.userid AS head_userid, l.userid AS tail_userid
 FROM likes l
 UNION
 SELECT cfc.commentid, cfc.head_userid, f.user2id AS tail_userid
 FROM comment_friends_closed cfc, comment_friends f
 WHERE cfc.tail_userid = f.user1id
 AND cfc.commentid = f.commentid
), comment_components AS (
 SELECT commentid, head_userid AS userid
 , min(tail_userid) AS componentid
 FROM comment_friends_closed
 GROUP BY commentid, head_userid
), comment_component_sizes AS (
 SELECT cc.commentid, cc.componentid, count(*) AS component_size
 FROM comment_components cc
 GROUP BY cc.commentid, cc.componentid
)
SELECT c.id AS commentid
 , coalesce(sum(power(ccs.component_size, 2)), 0) AS score
 FROM comments c
 LEFT JOIN comment_component_sizes ccs ON (ccs.commentid = c.id)
 GROUP BY c.id, c.ts
...

Scoring comments

Finding connected components of Users

Score = Σ (component size)2

c3

friends
likes

u1

u2

u3

Incremental maintenance

M M'=M+ΔM
+ΔM

Query(M) Query(M')

initial query
evaluation

(1) full
recomputation

(2a) explicit incremental maintenance
+ΔQuery(M, ΔM, aux1, …)

(2b) implicit incremental maintenance 🪄

(2) incremental maintenance

Solution Data
model

Explicitly
incremental

Implicitly
incremental

Xtend EMF − −

Hawk EMF + −

PostgreSQL relational + −

Neo4j graph + −

GraphBLAS matrix + −

Active Operations Framework EMF − +

ATL EMF − +

JastAdd EMF − +

NMF NMF − +

Differential Dataflow relational − +

YAMTL EMF + +

Incremental evaluationScoring comments
The granularity of the incremental
maintenance has a big effect on performance:

● New “likes” edge → recalculate only for the
the affected single comment

● New “knows” edges → recalculate for each
affected comments

● Reusing existing connected components?

Finding connected components of Users

Score = Σ (component size)2

c4

p2

c3

c5

p1

c1

c2

friends
likes

u1

u2

u3

replyOf

Scoring comments: SQL incremental

Results and findings

Scoring posts

Scoring posts Combined runtime of applying
changes and re-evaluating the query

Best tools (AOF, NMF, YAMTL,
Differential Dataflow) are
all implicitly incremental

If there is no timeout, these
phases are less important

1.3k nodes
2.5k edges

860k nodes
2.3M edges

Scoring comments

Scoring comments Neo4j times
out on SF1024

PostgreSQL times
out on SF512+

Best tools (AOF, NMF, YAMTL,
Differential Dataflow) are again
implicitly incremental

GraphBLAS is fast but
has limited granularity

Findings
1. Implicitly incremental tools are superior

2. Lacklustre performance from databases

3. Parallelization is not supported by EMF tools and databases

4. User-defined functions are important

5. Fair benchmarking and reproducibility are challenging

The Linked Data Benchmark Council

The Linked Data Benchmark Council (LDBC) is a non-profit
organization founded in 2012 with members from academia and
industry. Its goals are:

1. Defining graph processing benchmarks
2. Facilitating fair competition
3. Accelerating the adoption of ISO GQL and SQL/PGQ

LDBC members
20 companies and organizations, including:

Social Network Benchmark:

● The data of the TTC 2018 “Social Media” case is a subset of the SNB.

The SNB has new and updated workloads:

● analytical: Business Intelligence workload v1
● transactional: Interactive workload v2

Rigorous auditing process that takes system costs (license and ownership) into account.

LDBC benchmarks

Conclusion

Conclusion
The TTC 2018 “Social Media” case:

● A cross-technology benchmark
● for incremental graph queries

Findings:

● Two simple graph queries can be challenging to formulate even non-incrementally
● DBMSs have performance issues for graph queries
● Explicit incremental evaluation is difficult
● Implicit incremental tools are superior
● → “retrofitted” incrementality has limited benefits

Ω

Finding: Lack of parallelization
Parallelization is paramount today: even laptop CPUs have 8–16 cores.

The initial evaluation is trivially parallelizable for both queries.

Observation:

● Only NMF, Differential Dataflow, and GraphBLAS support parallelization.
● EMF tools and databases (Neo4j, PostgreSQL) lack parallelization.

Some computations are difficult to express in a declarative language, e.g. the
connected components algorithm

User-defined functions (UDFs) can be used to express these computations

● Common among EMF tools – Java/Xtend code operating on the EMF model
● Database systems like Spark/Databricks and Snowflake support Java UDFs

Incremental maintenance of UDFs is difficult

Finding: Importance of user-defined functions

We are comparing very different systems:

● EMF tools
● Neo4j – graph DBMS
● PostgreSQL – relational DBMS
● GraphBLAS – concurrent sparse linear algebra library written in C
● Differential Dataflow – dataflow library written in Rust

Reproducibility is also difficult:

● dockerized execution
● extensive CI tests
● benchmarking in standard cloud VMs

Finding: Fair benchmarking is difficult

Limitations of the benchmark

No delete operations

● Adding them to the data generator is difficult (GRADES-NDAʼ20 paper)

No (unweighted) shortest path queries

● Another important graph kernel, also challenging with deletes

See examples in the next slides.

Limitations

Connected components with delete operations

c4

p2

c3

c5

p1

c1

c2

friends
likes

u1

u2

u3

Scoring comments

replyOf

Score = Σ (component size)2 = 32 = 9

Connected components with delete operations

c4

p2

c3

c5

p1

c1

c2

friends
likes

u1

u2

u3

Scoring comments

replyOf

Score = Σ (component size)2 = 12 + 12 = 2

Shortest paths with delete operations

u1

u2
friends

u3

u4u5

Shortest paths with delete operations

u1

u2
friends

u3

u4u5

Shortest path: [u1, u5, u4]

Shortest paths with delete operations

u1

u2
friends

u3

u4u5

Shortest path: ?

Shortest paths with delete operations

u1

u2
friends

u3

u4u5

Shortest path: [u1, u2, u3, u4]

Shortest paths with delete operations

u1

u2
friends

u3

u4u5

Shortest path: [u1, u2, u3, u4]
[u1, u2, u5, u4]

Ideas for incremental evaluation //
Future work

The ideas in the following slides could work if all inserts are added one-by-one and
there are not too many inserts. (There arenʼt, see the table with the model sizes.)

IIRC none of the solutions in the paper used this: they all went for a bulk insertion
followed by a single recomputation step.

With a client-server setup, doing operations in bulk likely makes sense. Performing an
individual maintenance operation per insert is likely expensive. With a read-oriented
system (e.g. column store), it makes sense to perform the inserts in bulk.

Still, it would be interesting to give this a go with an embeddable database (e.g.
DuckDB, Neo4j) or a system which provides an option to write stored procedure (like
Oracleʼs PL/SQL).

Ideas for incremental evaluation

Scoring posts

u1

c4

p2

u2 c3

c5u3

likes
friends replyOf

Traversing the Submission tree

Score = 10 × #comments + #likes

Trick: For each Comment, store its root
Post. When inserting a new child Comment,
it should get its parentʼs root Post.

This works because the subgraph is a tree
and there are no cut-and-link operations.

Scoring comments

Finding connected components of Users

c3

friends
likes

u1

u2

u3

Score = Σ (component size)2

Trick: Upon adding a new “likes” or a new
“friends” edge, connected components can
only be merged together.

This works because there are no delete
operations.

Scoring comments

Finding connected components of Users

c3

friends
likes

u1

u2

u3

Trick: Upon adding a new “likes” or a new
“friends” edge, connected components can
only be merged together.

This works because there are no delete
operations.

Score = Σ (component size)2

Potential extensions to the slide deck
● concrete result slides
● details on SQL/PGQ WONTFIX
● model sizes
● incremental query formulation
● interesting findings
● more info on concrete tools

○ mention of DD & videos
○ mention of GraphBLAS
○ Hawk, NMF, YAMTL, etc.

● anything on DuckDB/DuckPGQ as a potential tool for Q1
● complaining that most MDE tools are single-threaded
● incremental tricks explained…

Incremental query formulation

Categories:

● Non-incremental: query is recomputed each time
● Implicitly implemental: the maintenance is done automatically by the system
● Explicitly incremental: the query developer manually incrementalizes the query

(poor manʼs view maintenance, can be retrofitted to existing systems)

Studied in depth in database research
…but most research focused on equijoins
…maybe anti- and outer joins

Transitive reachability (tree queries, connected components, etc.) are less studied.

Incremental view maintenance

(1) AOF
(2) ATL (3) + Incremental
(4) Differential Dataflow
(5) GraphBLAS (6) + Incremental
(7) Hawk (8) + IU (9) + IUQ
(10) JastAdd
(11) Neo4j (12) + Incremental
(13) NMF (14) + Incremental
(15) PostgreSQL (16) + Incremental
(17) Xtend
(18) YAMTL (19) + II (20) + EI

All tools

Most tools use the EMF data model
(1) Active Operations Framework (AOF)
(2) ATL (3) + Incremental
(7) Hawk (8) + IU (9) + IUQ
(10) JastAdd
(17) Xtend
(18) YAMTL (19) + II (20) + EI

NMF:
(13) NMF (14) + Incremental

Relational:
(4) Differential Dataflow
(15) PostgreSQL (16) + Incremental

Property graph:
(11) Neo4j (12) + Incremental

Matrix:
(5) GraphBLAS (6) + Incremental

Draft
a very small benchmark suite, just two queries and a few transformations

already highlights numerous usability and performance characteristics of systems !!

e.g. why donʼt MDE tools use relational DBMSs

discuss the two queries briefly

present a few solutions (e.g. Postgres/SQL; Neo4j/Cypher; MDE tools; differential
dataflow, refer to Frank McSherryʼs video)

FMS videos
Live coding differential dataflow:

● https://www.youtube.com/watch?v=W6TKxS_pWr0
● https://www.youtube.com/watch?v=83rG471bmw8
● https://www.youtube.com/watch?v=uZ23MnpujNA

https://www.youtube.com/watch?v=W6TKxS_pWr0
https://www.youtube.com/watch?v=83rG471bmw8
https://www.youtube.com/watch?v=uZ23MnpujNA

Post

User

Comment

Submission

submitter

likes

replyOf

Schema

friends

Instance

u1

c4

p2

u2 c3

c5u3

replyOf

p1

c1

c2

friends
likes

Differential dataflow: CC computation

 likes // node label comment
 .filter(|_| false)
 .map(|(user, comm)| ((user.clone(), comm), user))
 .iterate(|labels| {

 let knows = knows.enter(&labels.scope());
 let likes = likes.enter(&labels.scope());

 labels
 .map(|((node, comment), label)| (node, (label, comment)))
 .join_map(&knows, |_node, (label, comment), dest| ((dest.clone(), comment.clone()), label.clone()))
 .concat(&likes.map(|(user, comm)| ((user.clone(), comm), user)))
 .reduce(|_key, input, output| {
 // only produce output, if `input` contains `_key.0`
 if input.iter().any(|(label,_wgt)| *label == &_key.0) {
 output.push((input[0].0.clone(), 1));
 }
 })
 });

Model sizes for each scale factor

