
Vrije Universiteit Amsterdam Universiteit van Amsterdam

Master Thesis

LDBC Social Network Benchmark
Interactive v2.0

Author: David A. Püroja (10469036)

1st supervisor: prof. dr. Peter A. Boncz (CWI, VU)
daily supervisor: dr. Gábor Szárnyas (CWI)
2nd reader: prof. dr. Hannes F. Mühleisen (CWI, RU)

A thesis submitted in fulfillment of the requirements for
the joint UvA-VU Master of Science degree in Computational Science

January 23, 2023

Qui Patitur Vincit

ii

Abstract

The Linked Data Benchmark Council (LDBC) maintains the Social Network Bench-
mark Interactive (SNB-I) workload, which targets transactional database management
systems capable of supporting graph workloads. The first version of SNB-I, released in
2015, has implementations in a number of systems, including the Neo4j and TuGraph
graph databases, as well as the PostgreSQL and Umbra relational database manage-
ment systems. While this benchmark was influential, it had a number of shortcomings,
including the lack of delete operations and query variants, as well as the limited scal-
ability of its data and parameter generators.

In this thesis, we present the design of the SNB-I v2.0 workload. This renewed work-
load includes data sets up to 30× larger, includes deep deletion operations, and sup-
ports generating parameters in temporal buckets to ensure predictable runtimes. Ad-
ditionally, we present a design for a distributed driver that allows it to stress scale-out
systems in the future.

We used a graph DBMS and two relational DBMSs to conduct experiments with the
new workload to study its characteristics. First, we performed a three-way cross-
validation to ensure the correctness of the implementations. Second, we evaluated the
performance impact of the delete operations and found that they effect graph systems
less significantly than relational ones. Finally, we investigated the scalability of the
new temporal parameter generation and the stability of the resulting query execution
times. The experiments show that the new parameter generation scales well when ex-
tending to larger scale factors, achieving up to 100× better performance compared to
v1.0. We found that the new parameter generation improves the stability of runtimes
for chosen parameters.

The resulting workload is available as open-source software with unit tests, a con-
tinuous integration pipeline, and contributor guidelines. Additionally, we improved
usability of the benchmark with providing deployment and provisioning scripts using
Terraform and Ansible to setup benchmark environments in the cloud.

iv

Acknowledgements

First, I would like to thank my daily advisor, Gábor Szárnyas, for all the suggestions,
insights, gezelligheid, and ideas when I got stuck during the thesis. I am grateful
for your patience in answering my questions and the late-night debugging sessions
together. Without your help, it would have been impossible to complete this thesis.
Peter Boncz, thank you for the opportunity to do my thesis at CWI and for traveling
to Philadelphia to attend SIGMOD’22 and also CIDR’23 in Amsterdam, which cer-
tainly broadened my horizons in the field of data systems.

In addition to my supervisors, I would like to thank Arvind Shyamsundar from Mi-
crosoft, and Altan Birler from TUM for advising on the implementations for SQL
Server and Umbra, respectively.

I want to thank my family for all the support they gave me during the period of the
thesis. Finally, I would like to thank my girlfriend, Kayleigh, for all her support,
“work-free” weekend trips, dinners and being there for me.

Part of the Azure cloud infrastructure used for the experiments in this thesis is funded
by the Scalable Graph Workload grant from SURF.

ii

Contents

List of Figures vii

List of Tables xi

1 Introduction 1

1.1 Context . 1

1.2 Research Questions . 4

1.3 Thesis Structure . 5

2 Background 7

2.1 Benchmarking Database Management Systems 7

2.2 Graph Data Models . 8

2.2.1 Labeled Property Graph Model . 8

2.2.2 Resource Description Framework (RDF) 8

2.3 Graph Query Languages . 9

2.3.1 Cypher . 9

2.3.2 SQL/PGQ . 10

2.3.3 GQL . 10

2.3.4 Gremlin . 11

2.3.5 SPARQL . 11

2.4 DBMSs Supporting Graph Workloads . 12

2.4.1 TuGraph . 12

2.4.2 Neo4j . 12

2.4.3 Umbra . 13

2.4.4 PostgreSQL . 13

2.4.5 Microsoft SQL Server . 13

2.5 Scalability . 14

2.6 The LDBC Social Network Benchmark . 14

iii

CONTENTS

2.6.1 Data and Data Generator (Datagen) 16

2.6.2 Choke Points . 21

2.6.3 Query Templates . 21

2.6.4 Parameter Curation . 23

2.6.5 Operations in the Interactive Workload 23

2.6.5.1 Tracking Dependencies . 24

2.6.5.2 Workload Creation . 25

2.6.5.3 Benchmark Execution . 27

2.6.5.4 Cross-Validation . 27

2.6.6 Implementation . 27

2.6.7 ACID Compliance . 28

I SNB Interactive v2.0 29

3 Design & Implementation 31

3.1 Overview . 31

3.2 Migrating the Driver from the Hadoop Datagen to the Spark Datagen . . . 33

3.2.1 Creating the Dependent Time Column 33

3.2.2 Exporting Update Streams . 35

3.3 Time-Aware Scalable Parameter Curation . 36

3.3.1 Selecting Factor Tables . 37

3.3.2 Parameter Selection . 42

3.3.3 Path Curation . 44

3.4 Updating the Driver . 47

3.5 Updating the Reference Implementations . 49

3.6 SQL Server Reference Implementation . 49

4 Evaluation of Interactive v2.0 51

4.1 Experimental Setup . 51

4.2 Experiments for Tuning SNB Interactive v2 53

4.2.1 Characterization of the Hadoop and Spark Datagen’s Data Sets . . 53

4.2.2 Parameter Curation . 55

4.2.3 Path Curation . 56

4.3 Effect of Deletes . 61

iv

CONTENTS

5 Related Work on Database Benchmarks 65

5.1 LDBC SNB Business Intelligence (BI) . 65

5.2 LDBC Graphalytics . 65

5.3 LSQB: Large-Scale Subgraph Query Benchmark 66

5.4 LinkBench . 66

5.5 GDB-test . 66

5.6 TPC (Transaction Processing Performance Council) 67

5.6.1 TPC-C . 67

5.6.2 TPC-H . 67

5.6.3 TPC-DS . 67

5.7 YCSB . 68

II Distributed Driver Design 69

6 Tools for Distributed Benchmarking 71

6.1 Cloud Native Compute Foundation . 71

6.2 Distributed Frameworks . 71

6.2.1 Kubernetes . 72

6.2.2 Akka.io . 73

6.2.3 Message Passing Interface (MPI) . 73

7 Blueprint for a Distributed Benchmark Framework 75

7.1 Distributing the Benchmark Workload . 75

7.2 System Design . 77

7.2.1 Logging & Observability . 78

7.2.2 Communication . 78

7.2.3 Deployment . 79

8 Evaluation of Partitioning Strategies 81

8.1 Complex Read Partitioning . 81

9 Related Work on Distributed Benchmark Frameworks 85

9.1 Orchestrating DBMS Benchmarking in the Cloud with Kubernetes 85

9.2 Reproducible Benchmarking of Cloud-Native Applications with the Kuber-

netes Operator Pattern . 86

9.3 Is It Safe To Dockerize My Benchmark? . 87

v

CONTENTS

9.4 DIAMetrics . 87

9.5 PEEL . 88

10 Future Work 89

11 Conclusion 91

References 95

A Short Read Generation 107

B Parameter Curation Factor Table Selection 109

C Parameter Selection 115

D Parameter Curation Query 1 Example 119

E Scaling the Data sets to SF30,000 121

vi

List of Figures

1.1 Example of a deletion in the SNB graph. The red edges are likes from a

person to a post/comment, blue edges are creator edges, purple edges are

replyOf edges and black edges are knows edges. In case Person B is removed

from the graph, the cascading effects cause all nodes and edges to be deleted

except Person A, Person C and their knows edge, yielding a deletion of 5

nodes and 12 edges. 4

2.1 Example of a property graph. Yellow ellipses show the Person nodes with

the properties ID and Name, connected by relationships with the creation

date of the friendship as property. 9

2.2 Example query: LDBC SNB Interactive short query 6 (1). The input pa-

rameter is denoted as $messageId. 9

2.3 Example of a spiking event in the Hadoop Datagen update streams (com-

ment inserts) for Scale Factor 1. Update operations are bucketized per hour

according to their simulation timestamp. 15

2.4 Overview of the software components and data artifacts of the Interactive

workload. Legend: Yellow are the software components, grey the data arti-

facts and orange the DBMS tested. 16

2.5 Degree distribution of the Person nodes in the SNB graph for Scale Factor 1. 17

2.6 UML class diagram-style depiction of the LDBC SNB graph schema. (From

the LDBC SNB specification (1)) . 18

2.7 Query template Query 3 (1). The dashed red lines note negative conditions,

i.e., these edges must not exist in the graph. 22

2.8 Example of scheduling of complex read queries with an update interleave

of 1619 ms and frequencies Query1=26, Query2=37 and Query11=16, see

Equation 2.2 . 26

vii

LIST OF FIGURES

3.1 Schematic overview of key changes in the Interactive benchmark. The

changes are colored blue. The data artifacts are colored grey. Compo-

nents part of LDBC SNB but not changed in this thesis are marked yellow.

Components not part of LDBC SNB are marked orange. 32

3.2 Example of lifespan management of an entity and edges. Each node and

vertex has a creationDate and deletionDate specified. 33

3.3 Example of an entity with dependencies. 34

3.4 Creation of the update streams. The rows from the Parquet file from the

time split TStart are extracted and afterward the dependency time is added

depending on the entity. The result is exported to Parquet. 35

3.5 Pattern of LDBC SNB Interactive Complex Read 1 37

3.6 Pattern of LDBC SNB Interactive Complex Read 2 38

3.7 Pattern of LDBC SNB Interactive Complex Read 3 39

3.8 Pattern of LDBC SNB Interactive Complex Read 4 40

3.9 Pattern of LDBC SNB Interactive Complex Read 5 40

3.10 Pattern of LDBC SNB Interactive Complex Read 13 41

3.11 Pattern of the new LDBC SNB Interactive Complex Read 14 41

3.12 Selection of countries in the countryPairsNumFriends factor table on the

number of friendships between both countries using the percentile_disc

function. Correlated countries (red) are selected using percentile 1.0 and

anti-correlated countries (green) are selected using percentile 0.01. 45

3.13 Example of the problem of temporary paths in the Spark Data set 46

3.14 Batched loading of the update streams using DuckDB 47

4.1 Number of events per 12 hours for Hadoop and Spark during the simulation

time of the benchmark. 52

4.2 Cumulative sum of the number of events per 12 hours for Hadoop and Spark

during the simulation time of the benchmark. 54

4.3 Runtime of the parameter generators for Interactive v1.0 and v2.0. The

labels show the runtime in seconds. 55

4.4 Parameter Curation: Curated v1.0 vs. curated v2.0 using Neo4j with SF30.

For query3, v2a and v2b denote the variants of the query. 57

4.5 Parameter Curation: Curated v1.0 vs. curated v2.0 using Umbra 45f3aae27

with SF30. For query3, v2a and v2b denote the variants of the query. . . . 58

viii

LIST OF FIGURES

4.6 Example of number of friends of friends for a given person ID in the SF10

data set. The accuracy of the number of friends of friends varies for one

person per day during the simulation timeframe between 62% and 86%. . . 60

4.7 Path queries: Runtimes for path queries with interactive v1.0 and interactive

v2.0 using Neo4j. Note that Q14 is changed between v1.0 and v2.0, with v2.0

performing the computationally much more difficult cheapest path problem. 61

4.8 Effect of deletes: Runtimes of delete queries using Neo4j 4.4.1 for scale

factors SF10, 30, 100 and 300 . 62

4.9 Effect of deletes: Runtimes of delete queries using Umbra for scale factors

SF10 and SF30. 62

4.10 Effect of deletes: Runtime comparison of delete queries for Neo4j v4.4.1,

Umbra and DBMS X using SF10 and 750,000 update operations. 64

6.1 Mapping from virtual machine with applications to Kubernetes. Image

from (6) . 72

7.1 Workflow of the logging for the distributed driver 79

7.2 Distributed driver architecture. Orange shows the elements that are present

in the Kubernetes cluster, Yellow are the external components that need

configuration, Blue are the components specifically for the distributed driver. 80

8.1 Workload distribution: relative runtimes per thread for three different par-

titioning strategies. 83

B.1 Pattern of LDBC SNB Interactive Complex Read 6 109

B.2 Pattern of LDBC SNB Interactive Complex Read 7 110

B.3 Pattern of LDBC SNB Interactive Complex Read 8 111

B.4 Pattern of LDBC SNB Interactive Complex Read 9 111

B.5 Pattern of LDBC SNB Interactive Complex Read 10 112

B.6 Pattern of LDBC SNB Interactive Complex Read 11 113

B.7 Pattern of LDBC SNB Interactive Complex Read 12 114

C.1 Distribution of the number of friends of friends per person ID. 116

C.2 Grouped person IDs in the distribution of number of friends of friends . . . 116

C.3 Selected window of person IDs in the distribution of number of friends of

friends . 117

ix

LIST OF FIGURES

x

List of Tables

2.1 List of selected database systems with an implementation of LDBC SNB

Interactive. v1.0, v2.0: availability of implementations for LDBC SNB In-

teractive v1.0 and v2.0; WIP: work-in-progress. 12

2.2 Top 10 first names for persons from the SF10 Spark Data set 19

2.3 Number of persons in the graph for a given scale factor. 19

2.4 Overview of update queries used in Interactive v1.0. 20

2.5 Example of three factor tables from Datagen: (left) daily bucketized number

of messages, (middle) number of messages created per country, (right) num-

ber of messages grouped by language. 23

3.1 Update query with the attribute(s) used to determine dependency time. . . 34

3.2 Examples of correlated and anti-correlated country pairs from the country-

PairsNumFriends factor table. 39

4.1 Benchmark environment used in parameter curation comparison 56

4.2 Comparison of variance, standard deviation and mean of runtimes in mil-

liseconds using Neo4j and Umbra on SF30. 59

4.3 Total number of paths with discontinuous time intervals for SF10. 59

4.4 Runtimes for deletes using Neo4j v4.4.1 for SF10, 30, 100 and 300. 63

4.5 Runtimes for deletes using Umbra for SF10 and 30. 63

8.1 Workload distribution: scheduled counts per query for each workload parti-

tioning strategy by scheduling 10000 queries and selecting the first hour of

scheduled queries. 84

A.1 Short read queries executed after read query 107

E.1 Number of persons in the graph for a given scale factor. 121

xi

LIST OF TABLES

xii

1

Introduction

1.1 Context

Graph data processing is becoming more prevalent in many application domains where

highly-connected data sets are present, for example, in finance, infrastructure, communi-

cation networks, and social networks (2, 53, 54). In light of this, there is an emergence

of graph database management systems (GDBMSs), e.g., Neo4j (40), Nebula Graph (73),

Amazon Neptune (7), and Kùzu (19). These systems use query languages created for graph

data processing to enable queries such as traversal and shortest paths. Examples of these

query languages are Cypher (23) and the upcoming ISO GQL (Graph Query Language)

standard (16).

To help speed up the adoption of graph(-capable) data management systems, a group of

vendors and researchers founded the Linked Data Benchmark Council (LDBC) (4). LDBC

aims to stimulate technological progress among competing systems. To this end, they spec-

ify benchmarks capturing graph workloads, define the benchmarking procedure, and verify

benchmark results via audits (18). The benchmarks set a challenge and develop technology

around databases processing graph data, accelerating these systems’ maturity and adding

graph features to existing systems. The LDBC maintains the Social Network Benchmark

(SNB) suite, containing graph workloads to benchmark database systems. This benchmark

suite consists of the Interactive workload (SNB-I) and Business Intelligence workload (SNB-

BI) (61). SNB-I focuses on transactional graph processing: it executes read queries while

continuously inserting new data into the graph. The SNB-BI focuses on aggregation- and

join-heavy complex queries touching a large portion of the graph and includes microbatches

of insert and delete operations (1). While both workloads have updates, updates in SNB-I

1

1. INTRODUCTION

are executed concurrently while SNB-BI allows batched execution; concurrent updates are

optional. The SNB workloads make use of parameterized query templates: the benchmark

use parameters with similar runtime behavior to execute queries, which are selected using

parameter curation (28).

The LDBC SNB benchmarks use a choke-point-based benchmark design process (18).

These choke points are well-chosen difficulties introduced by the workload, identified as

crucial technical challenges. These choke points cover complex problems which are not

always naturally part of synthetic benchmarks and incentivize database developers to em-

ploy optimization techniques in the database to increase performance (10). An example of

a choke point is the ability of the DBMSs to perform query optimizations like pushdown

path restrictions on an existing path index or to compute the unweighted shortest paths

between a node and a set of nodes.

While there are other benchmarks targeting graph database systems like LinkBench (5)

and GDB-test (35), the SNB Interactive is unique since it includes concurrent updates and

inserting data with inter-dependencies, which requires a complex driver able to track these

dependencies. In addition, the benchmark includes highly-connected data with realistic

attributes and structure correlations, and it contains graph queries like hierarchy traver-

sal, multi-hop neighborhood queries, and shortest paths.

Emerging graphs are also frequently found in tabular data sets (53). To analyze these

in-place, graph extensions were proposed to relational database management systems

(RDBMSs), e.g., SAP HANA Graph (52), IBM Db2 Graph (63), Microsoft SQL Server1,

and DuckDB (62). Several of these systems use an extension to their existing SQL dialect,

e.g., the Graph Extension is integrated into Microsoft SQL Server’s T-SQL language. Addi-

tionally, the upcoming ISO SQL:2023 standard introduces the SQL/PGQ (Property Graph

Queries) (16) extension which shares its graph query syntax with GQL. These languages

originate from a liaison between LDBC and the International Organization for Standard-

ization (ISO), where LDBC makes technical contributions and is actively involved in the

standard.

We focus in this research on the Interactive workload. The current version of SNB Inter-

active, v1.0, has the following limitations. First, it does not support deletions. Therefore,
1https://docs.microsoft.com/en-us/sql/relational-databases/graphs/sql-graph-overview

2

https://docs.microsoft.com/en-us/sql/relational-databases/graphs/sql-graph-overview

1.1 Context

it does not test the performance of dynamic graph processing systems under such oper-

ations (71). Deletions in GDBMSs are also desirable with the General Data Protection

Regulation (GDPR) (56), which gives citizens of the EU the right to have their personal

information removed from personal-data processing database systems. Second, the scala-

bility of Interactive v1.0 was limited to graphs of 1 TB. In this thesis, we introduce support

for larger data sets up to 30 TB to make the benchmark capable of stressing the scala-

bility of database systems. The Interactive driver runs the queries in parallel against the

DBMS, which mostly support concurrent transactions, to simulate realistic transactional

workloads. Since the execution of the queries and updates are concurrent, the results of

queries are not deterministic. Therefore, for the update queries, the benchmark makes use

of dependency tracking: each update operation has a timestamp denoting the creation time

of the operation it depends on. Not including dependency tracking while issuing queries

concurrently can lead to errors, e.g., trying to insert a reply to a post that is not present

in the database.

This research has several challenges. First, we must refactor the driver to include delete

queries, support for larger scale factors, and design an update stream generator with de-

pendency tracking capable of handling deletes. Implementing deletions in the benchmark

driver is non-trivial since operations on the database may depend on each other. Figure 1.1

gives an example of a deletion in the graph. To prevent the execution of a query dependent

on a deleted or not yet inserted entity or edge, all benchmark driver processes issuing queries

regarding that specific entity must know whether they can execute a query. Dependency

tracking is challenging to implement in a scalable environment since the communication of

the dependency time to all processes is expensive, thus a potential bottleneck for the driver.

The parameters selected for the complex queries require temporal attributes to know

when a parameter can execute to ensure runtimes are predictable. Temporal attributes

require a parameter generator that can select parameters with the desired properties for

a given time during the simulation time of the benchmark. Additionally, we must include

support for temporal parameters in the driver. The changes in the driver necessitate updat-

ing the reference implementations to support the new delete queries. For the distributed

driver design, partitioning of the operations needs to be taken into account. The operations

should be partitioned so each client has approximately the same amount of workload.

3

1. INTRODUCTION

Person B

Comment 1
Person A Person C

Comment 2

Comment 3

Post X

Figure 1.1: Example of a deletion in the SNB graph. The red edges are likes from a person
to a post/comment, blue edges are creator edges, purple edges are replyOf edges and black
edges are knows edges. In case Person B is removed from the graph, the cascading effects
cause all nodes and edges to be deleted except Person A, Person C and their knows edge,
yielding a deletion of 5 nodes and 12 edges.

The result is the SNB Interactive v2.0 which adds support for deep deletions, temporal

parameters, and scalability for large data sets, making it relevant for more powerful sys-

tems in the future. Additionally, we present a distributed driver architecture.

1.2 Research Questions

This thesis focuses on designing and implementing the LDBC SNB-I v2.0 to include dele-

tions. As the basis for the SNB-I v2.0, we use the driver and implementations from v1.0

including deletions used in the SNB-BI workload.

1. How can deletions be integrated into the Social Network Benchmark Interactive?

(a) What changes in the Interactive benchmark need to be implemented to support

deletions?

(b) What changes are required in the Interactive benchmark driver to support dele-

tions?

(c) Do the data sets produced by the Spark Datagen preserve the characteristics of

the ones generated by the Hadoop Datagen?

2. How to generate parameters with similar behavior to the query template with the

inclusion of inserted and deleted nodes and edges?

(a) What effect do deleted entities have on the parameter generation?

(b) How to implement temporal parameter generation?

4

1.3 Thesis Structure

3. What effect does the inclusion of deletion operations have on the performance of the

systems under test?

4. How can the driver be made scalable?

(a) How to scale up the Interactive benchmark driver?

(b) How can the Interactive benchmark driver be made distributed?

1.3 Thesis Structure

The thesis is structured as follows. In Chapter 2, we provide background information

on the current LDBC SNB Benchmark, giving an overview of the Datagen, driver, and

implementations currently used in SNB-I v1.0. Chapter 3 gives the design and implemen-

tation details, describing the changes made in the driver to support the new Datagen,

the implementation of deletes, and the temporal parameter selection. In Chapter 4 the

results of experiments are discussed, showing the effect of deletes on selected systems and

a discussion on the parameters used to generate and curate parameters. Chapter 5, shows

related work in the field of benchmarks containing graph workloads. In Chapters 6–9, we

elaborate on the design and considerations for a distributed driver. Finally, in Chapter 10

and Chapter 11, the conclusions and answers to the research questions are given, along

with several suggestions for future work.

5

1. INTRODUCTION

6

2

Background

This section provides the context and concepts required for understanding the landscape of

database benchmarks and graph data management, the related work, the current working

of the LDBC SNB Interactive, and the design and implementation choices made in this

thesis. First, Section 2.1 outlines the challenges of benchmarking database management

systems (DBMSs). Second, Section 2.2 is a generic overview of graph data models. Then,

in Section 2.3 we discuss different graph query languages and in Section 2.4 we present

DBMSs supporting graph workloads. We give a definition of scalability in Section 2.5.

Finally, we describe the Social Network Benchmark with its components in Section 2.6.

2.1 Benchmarking Database Management Systems

Performance metrics derived from benchmark results are used frequently in scientific papers

and by vendors to compare their systems to other solutions. However, fair performance

benchmarking is not trivial, and providing reproducible and interpretable results is often

lacking (30). Raasveldt et al. (48) describe common pitfalls of benchmarking different

database management systems, including non-reproducibility, failure to optimize, overly-

specific tuning, and differentiation between cold, warm and hot runs.

No single metric can measure computer systems’ performance on all applications: a

system’s performance may vary depending on the application domain. Therefore, domain-

specific, application-level benchmarks are needed to gain insight into the system’s expected

performance on a given workload (55). Jim Gray defined the following four criteria in the

Benchmark Handbook (26): Relevance, the benchmark must measure the peak perfor-

mance and price/performance of systems when performing operations typical for a given

7

2. BACKGROUND

workload. Portability, the benchmark should be implementable on different systems and ar-

chitectures. Scalability, the benchmark should apply to small and large computer systems.

Simplicity, the benchmark should be understandable and implementable in a reasonable

amount of time.

Database benchmarks not only allow testing of different technologies but also stimulate

technological advances and provide a common understanding of important challenges that

the database systems community should work on (33, 43). To guide the design of the

benchmarks, “choke points” are used. Choke points are the technological challenges under-

lying a benchmark whose resolution will significantly improve the performance of a product

across multiple workloads. In addition, choke points in benchmarks should point in rele-

vant directions where technological advances are needed (10). The LDBC Social Network

Benchmark suite contains several choke points, which are explained in Section 2.6.2.

2.2 Graph Data Models

In this section, we give an overview of popular graph query languages and illustrate them

using the example graph query shown in Figure 2.2. This query retrieves the forum and

moderator person for a given message.

2.2.1 Labeled Property Graph Model

The property graph model represents a graph by a set of nodes with relationships (edges),

properties and labels. (50) The nodes contain properties, for example, a person has the

properties email address, birthday, languages a person speaks. Relationships connect two

nodes, e.g., a friendship. A relationship can also have properties, like the date a friendship

connection is formed. Labels can be added to nodes and relationships. An example of a

labeled property graph is given in Figure 2.1. Systems that support this model are, e.g.,

Neo4j (40) and TuGraph (67).

2.2.2 Resource Description Framework (RDF)

The Resource Description Framework (RDF) is used to express information about resources

(entities). The data model consists of triples: a subject, a predicate and an object (13).

A subject and object are the nodes in the graph, the predicates are the edges. The

components can be globally described using an Internationalized Resource Identifier (IRI).

In case of the subject or object, they can also have no IRI, which are referred to as blank

8

2.3 Graph Query Languages

creationDate: 24 March 2005

Label: friendship

creationDate: 22 June 2007

Label: friendship

ID: 6042

Name:Leslie Knope

creationDate: 12 April 2002

Label: friendship

creationDate: 7 July 2007

Label: friendship

ID: 8407

Name: Ann Perkins

ID: 8251

Name: Andy Dwyer

ID: 7113

Name: Ben Wyatt

Figure 2.1: Example of a property graph. Yellow ellipses show the Person nodes with the
properties ID and Name, connected by relationships with the creation date of the friendship
as property.

nodes. Lastly, an object can also be a literal, which is used to express a value, such as

strings, numbers and dates (13). Applications of RDF are for example found in data

integration and federation.

2.3 Graph Query Languages

Figure 2.2: Example query: LDBC SNB Interactive short query 6 (1). The input parameter
is denoted as $messageId.

2.3.1 Cypher

Cypher (24) is a query language, originally developed by Neo4j (72), used to query database

systems with the property graph model. The language allows for “ASCII art” style of ex-

pressing a query to describe the graph pattern matching mechanism (24), also known as

9

2. BACKGROUND

visual graph syntax. An example is shown in Listing 2.1. It is now used by several commer-

cial database systems besides Neo4j, e.g., AWS Neptune (7), Memgraph (37), TuGraph (67)

and SAP HANA (52).
1 MATCH (message:Message {id: $messageId })-[: REPLY_OF *0..]->(rootPost:Post)
2 <-[:CONTAINER_OF]-(forum:Forum)-[: HAS_MODERATOR]->(moderator:Person)
3 RETURN
4 forum.id AS forumId ,
5 forum.title AS forumTitle ,
6 moderator.id AS moderatorId ,
7 moderator.firstName AS moderatorFirstName ,
8 moderator.lastName AS moderatorLastName

Listing 2.1: Example of query written in Cypher to retrieve information about a forum a
message is posted in (LDBC Short query 6)

2.3.2 SQL/PGQ

SQL/PGQ (Property Graph Queries) (16) is an extension in the SQL:2023 standard en-

abling graph pattern matching and path-finding in SQL. Conceptually, SQL/PGQ rep-

resents the graph as vertex tables and edge tables, defined over the relational tables. It

is a read-only extension, meaning that SQL/PGQ does not contain syntax to create new

graphs, only how define graph views on SQL tabular schemas (16). An example is shown

in Listing 2.2.1

1 SELECT forumId , forumTitle , moderatorId , moderatorFirstName , moderatorLastName
2 FROM GRAPH_TABLE (socialNetwork ,
3 MATCH (message:Message WHERE id = $messageId)-[: replyOf]->*(rootPost:Message)
4 <-[:containerOf]-(forum:Forum)-[: hasModerator]->(moderator:Person)
5 COLUMNS (forum.id AS forumId , forum.title AS forumTitle ,
6 moderator.id AS moderatorId , moderator.firstName AS moderatorFirstName ,
7 moderator.lastName AS moderatorLastName)
8) gt;

Listing 2.2: Example query written in SQL/PGQ to retrieve information about a forum a
message is posted in (LDBC Short query 6)

2.3.3 GQL

GQL, Graph Query Language (16), is a standalone property graph query language com-

plementing SQL/PGQ, sharing the graph data model and graph pattern matching sublan-

guage with SQL/PGQ. In addition to SQL/PGQ, which only specifies a graph view on a

table and outputs a table, GQL can also output graph views and create new graphs. The

standard is still in development and is expected to release in March 2024.
1Note that in comparison with Cypher, the Kleene star, *, denotes a path of length 0..* while in

Cypher it denotes 1..*.

10

2.3 Graph Query Languages

2.3.4 Gremlin

Gremlin is a graph traversal language from the Apache TinkerPop project (22, 51). It

contains three components: a graph, a traversal and a set of traversers. The latter move

around the graph given the instructions in the traversal until all traversers have halted.

The location of the halted traversers then gives the result (51). The language can be im-

plemented in multiple host languages such as Java and Python, and it supports imperative

and declarative styles. An example is shown in Listing 2.31.

1 g.V().has('Post','id',:messageId).fold()
2 .coalesce(unfold(),V().has('Comment ','id',:messageId)
3 .repeat(out('replyOf '). simplePath ()). until(hasLabel('Post')))
4 .in('containerOf ').as('forum ').out('hasModerator ').as('moderator ')
5 .select('forum ','moderator ').by(valueMap('id','title '))
6 .by(valueMap('id','firstName ','lastName '))

Listing 2.3: Example of query written in Gremlin to retrieve information about a forum a
message is posted in (LDBC Short query 6)

2.3.5 SPARQL

SPARQL is a query language to query and update graph data in RDF sources (69). A

SPARQL query can access multiple data sources using a federated query, allowing merging

data from multiple sources (69). Example of systems that support SPARQL is AWS

Neptune (7) and Ontotext GraphDB (42). An example is shown in Listing 2.42.

1 PREFIX rdf: <http :// www.w3.org /1999/02/22 -rdf -syntax -ns#>
2 PREFIX rdfs: <http ://www.w3.org /2000/01/rdf -schema#>
3 PREFIX xsd: <http :// www.w3.org /2001/ XMLSchema#>
4 PREFIX sn: <http :// www.ldbc.eu/ldbc_socialnet /1.0/ data/>
5 PREFIX snvoc: <http ://www.ldbc.eu/ldbc_socialnet /1.0/ vocabulary/>
6

7 SELECT
8 ?forumId ?forumTitle ?moderatorId ?moderatorFirstName ?moderatorLastName
9 WHERE {

10 BIND($messageId AS ?messageId) ?message snvoc:id ?messageId .
11 OPTIONAL {
12 ?message snvoc:replyOf* ?originalPostInner .
13 ?originalPostInner a snvoc:Post .
14 } .
15 BIND(COALESCE (? originalPostInner , ?message) AS ?originalPost) .
16 ?forum snvoc:containerOf ?originalPost .
17 ?forum snvoc:id ?forumId .
18 ?forum snvoc:title ?forumTitle .

1Example from https://github.com/jackwaudby/ldbc-snb-implementations/blob/
5e2992d6fe0cc2ea404c90b0405c6e6791da2049/gremlin_queries/short_read_6.txt

2Example from https://github.com/ldbc/ldbc_snb_interactive_impls/blob/
c0db26133eb0b3837ee1b809975a5f797bc80dde/sparql/queries/interactive-short-6.sparql

11

https://github.com/jackwaudby/ldbc-snb-implementations/blob/5e2992d6fe0cc2ea404c90b0405c6e6791da2049/gremlin_queries/short_read_6.txt
https://github.com/jackwaudby/ldbc-snb-implementations/blob/5e2992d6fe0cc2ea404c90b0405c6e6791da2049/gremlin_queries/short_read_6.txt
https://github.com/ldbc/ldbc_snb_interactive_impls/blob/c0db26133eb0b3837ee1b809975a5f797bc80dde/sparql/queries/interactive-short-6.sparql
https://github.com/ldbc/ldbc_snb_interactive_impls/blob/c0db26133eb0b3837ee1b809975a5f797bc80dde/sparql/queries/interactive-short-6.sparql

2. BACKGROUND

19 ?forum snvoc:hasModerator ?moderator .
20 ?moderator snvoc:id ?moderatorId .
21 ?moderator snvoc:firstName ?moderatorFirstName .
22 ?moderator snvoc:lastName ?moderatorLastName .
23 }

Listing 2.4: Example of a query written in SPARQL to retrieve information about a forum
a message is posted in (LDBC Short query 6)

2.4 DBMSs Supporting Graph Workloads

In this section, we discuss the key features of database management systems that have

implementations for the LDBC SNB Interactive workload1.

name data model query language v1.0 v2.0

Neo4j property graph Cypher & API (Java) yes yes
Microsoft SQL Server relational T-SQL yes yes
PostgreSQL relational SQL yes yes
TuGraph property graph Cypher & API (C++) yes WIP
Umbra relational SQL yes yes

Table 2.1: List of selected database systems with an implementation of LDBC SNB Inter-
active. v1.0, v2.0: availability of implementations for LDBC SNB Interactive v1.0 and v2.0;
WIP: work-in-progress.

2.4.1 TuGraph

TuGraph (67) is an open-source2 GDBMS offered by the Ant Group, supporting property

graph data structures. Cypher is a supported query language, as well as C++14 or Python

stored procedures which are preloaded into the database. TuGraph has to date two audited

LDBC SNB Interactive benchmark results.3

2.4.2 Neo4j

Neo4j is a GDBMS implemented in Java, which uses a “native” (pointer-based) graph data

model to store the data. The data is represented as a node, edge, or attribute where nodes

and edges can be labeled. (72) Neo4j provides three ways of querying graphs: through their

graph query language Cypher, using the REST API, and programming against their Java
1LDBC SNB Implementations can be found at https://github.com/ldbc/ldbc_snb_interactive_

impls
2https://github.com/TuGraph-db/tugraph-db
3https://ldbcouncil.org/benchmarks/snb/

12

https://github.com/ldbc/ldbc_snb_interactive_impls
https://github.com/ldbc/ldbc_snb_interactive_impls
https://github.com/TuGraph-db/tugraph-db
https://ldbcouncil.org/benchmarks/snb/

2.4 DBMSs Supporting Graph Workloads

API1. Neo4j has two editions: Community and Enterprise. Compared to the Community

version, the Enterprise version comes with additional runtimes which support pipelined

and parallel execution.

2.4.3 Umbra

Umbra is a flash-based RDBMS in development at the Technische Universität München

(TUM), which uses columnar storage, and just-in-time compiled query execution where the

logical query plan is compiled parallelized to machine code (41). It is a hybrid transaction-

analytical processing system (HTAP) that can handle both OLAP and OLTP workloads.

2.4.4 PostgreSQL

PostgreSQL (27) is an open-source RDBMS using the SQL query language and capable

of querying JSON-format representing nested (non-first normal form) data. Originally,

it started as a project based on database Ingres at Berkeley (58). It supports add-ons,

for example, PostGIS, adding support for geographic objects in SQL (47). It is a popu-

lar database with offers on major public cloud platforms as Azure, AWS, Google Cloud

and IBM Cloud. To express path queries in PostgreSQL, the SQL:1999 WITH RECURSIVE

statement is used.

2.4.5 Microsoft SQL Server

SQL Server is an RDBMS developed by Microsoft and uses a dialect of SQL, Transact-

SQL, for querying data. Several editions are available depending on the features required

by the user. Microsoft also offers SQL Server as a platform-as-a-service option through

their Azure cloud platform as Azure SQL Database. However, the two offerings are only

partially compatible: some query syntax is not fully interchangeable between standalone

SQL Server and Azure SQL Database2. SQL Server supports HTAP workloads, providing

OLTP and OLAP processing3. SQL Server has a graph extension, SQL Graph, which uses

node and edge tables to store graph data models and uses the MATCH function to support

pattern matching queries. In addition, SQL Graph includes the shortest path function.4

1https://neo4j.com/developer/language-guides/
2https://learn.microsoft.com/en-us/azure/azure-sql/database/transact-sql-tsql-

differences-sql-server?view=azuresql
3https://learn.microsoft.com/en-us/azure/architecture/data-guide/relational-data/

online-analytical-processing
4https://learn.microsoft.com/en-us/sql/relational-databases/graphs/sql-graph-

overview?view=sql-server-ver16

13

https://neo4j.com/developer/language-guides/
https://learn.microsoft.com/en-us/azure/azure-sql/database/transact-sql-tsql-differences-sql-server?view=azuresql
https://learn.microsoft.com/en-us/azure/azure-sql/database/transact-sql-tsql-differences-sql-server?view=azuresql
https://learn.microsoft.com/en-us/azure/architecture/data-guide/relational-data/online-analytical-processing
https://learn.microsoft.com/en-us/azure/architecture/data-guide/relational-data/online-analytical-processing
https://learn.microsoft.com/en-us/sql/relational-databases/graphs/sql-graph-overview?view=sql-server-ver16
https://learn.microsoft.com/en-us/sql/relational-databases/graphs/sql-graph-overview?view=sql-server-ver16

2. BACKGROUND

2.5 Scalability

A benchmark should scale from small, single-node systems to large, distributed systems (26).

There are two options when scaling systems, scaling up or scaling out. Scaling up is to

optimize the application to maximize performance using one single-node system, for exam-

ple, improving the application or upgrading the hardware of the single node. Scaling out

is to make the application distributed across multiple systems. When deciding between

these two scaling options, the COST-metric should be taken into account: Configura-

tion that Outperforms a Single Thread (36), indicating how many machines one needs to

achieve a performance equal to a single thread. The advantages of distributed systems are

fault-tolerance and scaling out when required.

2.6 The LDBC Social Network Benchmark

The LDBC Social Network Benchmark (1) is a benchmark suite for assessing the perfor-

mance of DBMSs with an emphasis on graph queries. The graph in SNB models a social

network with properties similar to Facebook. The motivation to choose a social network

as a benchmark scenario is because it is a graph-centric use case that is understandable

and realistic as necessary for the benchmark queries. This social network introduces three

non-trivial properties to ensure realism like a real social network: correlated attribute val-

ues (see Section 2.6.1), spiking trends (as shown in Figure 2.3) and structure correlations,

for example, persons who study at the same university are more likely to become friends.

Other graph network generators typically fail to capture how nodes are connected and

therefore do not show structural correlations (11, 44). SNB uses a choke-point-based de-

sign to stimulate technological advances, optimizing the performance of the choke-points

targets (1).

The LDBC SNB Interactive workload covers numerous features that are not directly

related to graph data management but are considered important in mature data processing

systems. These include: 1) loading large-scale data sets, 2) supporting date- and time-

related features, such as correct handling of daylight saving and leap seconds1, providing

functions to extract parts of a timestamp, 3) supporting Unicode strings and nested data

structures. Moreover, the workload requires ACID-compliance, see Section 2.6.7.

1About Leap Seconds: https://www.rfc-editor.org/rfc/rfc7164

14

https://www.rfc-editor.org/rfc/rfc7164

2.6 The LDBC Social Network Benchmark

20
12

-09
-15

20
12

-10
-01

20
12

-10
-15

20
12

-11
-01

20
12

-11
-15

20
12

-12
-01

20
12

-12
-15

20
13

-01
-01

Time (Simulation date)

100

200

300

400

500

600

To
ta

l o
pe

ra
tio

ns

(insert) Add Comment operations aggregated count per hour
Add Comment count

Figure 2.3: Example of a spiking event in the Hadoop Datagen update streams (comment
inserts) for Scale Factor 1. Update operations are bucketized per hour according to their
simulation timestamp.

15

2. BACKGROUND

The Social Network Benchmark v1.0 consists of multiple software components shown

in Figure 2.4. The Datagen including the data output will be discussed in Section 2.6.1.

Section 2.6.2 provide a brief introduction to the choke points in Interactive. Next, we

discuss in Section 2.6.3 the query templates in general and the substitution parameters

from the parameter generation and curation, discussed in Section 2.6.4. Details of the

driver, including the workload creation, dependency tracking and execution modes are

discussed in Section 2.6.5. Finally, in Section 2.6.6 we discuss the components that an

implementation for a SUT consists of, which is the client used by the benchmark driver.

Datagen

Parameter

Generation

Driver

Client
(System under test specific

implementation)

Factor TablesUpdate
Streams

Substitution

Parameters

Initial
snapshot

System under test

Loader

Figure 2.4: Overview of the software components and data artifacts of the Interactive work-
load. Legend: Yellow are the software components, grey the data artifacts and orange the
DBMS tested.

2.6.1 Data and Data Generator (Datagen)

The SNB data generator (Datagen) simulates the users’ activity over a specified duration.

The data set represents a snapshot of the activity of a social network over three years,

simulating the time period between 2010-01-01 and 2012-12-31. It consists of persons

connected through a friendship network and messages that the persons post in message

threads on their forums. Figure 2.5 shows the degree distribution for the persons for scale

factor 1. Two types of subgraphs are present in the data set: persons form a network

of nodes along many-to-many edges whereas the messages, tag classes, and places form

16

2.6 The LDBC Social Network Benchmark

hierarchies. Each person in this data set lives in a city that is part of a country. One may

be a member of organizations, companies and universities (18).

100 101 102 103 104

Degree of node

100

101

102

103

Nu
m

be
r o

f n
od

es

Degree distribution of Person nodes for SF1

Figure 2.5: Degree distribution of the Person nodes in the SNB graph for Scale Factor 1.

The social network contains correlated attribute values, which also occur in real graphs.

These correlations can influence the complexity of algorithms. As such, taking correlations

into account in query optimization will likely lead to faster and better query plans in a

database system. An example correlated attribute value is the first name a person has

depending on the location of that person. Table 2.2 shows the frequency of first names

for Germany, China and Spain. The benchmark specification (18, Section 3.3.2) gives a

detailed overview of attribute value correlations.

Figure 2.6 shows the schema of the graph. The schema shows how the persons interact

with each other on the social network: through friendships, modeled with the knows edge,

and interactions using messages by sharing content such as images or text, replying to

other messages, and giving likes.

The Interactive workload v1.0 uses a data generator based on Hadoop, referred to as the

“Hadoop Datagen” in the following. In 2020, the data generator was migrated to Spark to

17

2. BACKGROUND

F
igu

re
2.6:

U
M

L
class

diagram
-style

depiction
of

the
LD

B
C

SN
B

graph
schem

a.
(From

the
LD

B
C

SN
B

specification
(1))

18

2.6 The LDBC Social Network Benchmark

FirstName Count FirstName Count FirstName Count
Karl 194 Yang 974 Jose 58
Fritz 173 Chen 957 Manuel 54
Hans 171 Wei 847 David 51
Wolfgang 156 Lei 821 Antonio 47
Rudolf 153 Jie 781 Francisco 33
Walter 140 Jun 747 Carlos 28
Franz 121 Li 552 Pedro 24
Otto 108 Hao 507 Luis 24
Wilhelm 96 Lin 422 Rafael 24
Paul 79 Peng 419 Javier 23

Table 2.2: Top 10 firstnames for persons from the SF10 Spark Data set with location Ger-
many (left), China (middle) and Spain (right).

increase portability and scalability. This version, referred to as the “Spark Datagen”, intro-

duced numerous changes, including changes in the generated CSV schemas and support for

serializing files in the compressed Parquet format (21). Moving from Hadoop, disk-based,

to Spark, memory-based, allowed for better use of available memory (59). The SNB Inter-

active v1.0 uses the data generated by the Hadoop Datagen1, which limits its scalability to

SF1,000, while the Business Intelligence workload uses the Spark Datagen2 and it is able

to scale up to SF30,000. Appendix E explains how the data sets were configured for up to

SF30,000. Table 2.3 show the number of persons in the graph per scale factor. One of the

key objectives of this thesis is to make use of the Spark Datagen’s improved scalability in

SNB Interactive.

SF 1 3 10 30 100 300 1,000 3,000 10,000 30,000

numPerson 10,620 25,870 70,800 175,950 487,700 1,230,500 3,505,000 9,232,000 27,200,000 77,000,000

Table 2.3: Number of persons in the graph for a given scale factor.

The Spark data generator produces several outputs:

• Initial snapshot: the data generated during the simulation before the cut-off date.

• Factor tables: tables containing statistics and parameters from the graph, used as

input for the parameter generation. Section 2.6.4 will elaborate on the use of the

factor tables.

• Update streams: data used for the update (and delete) queries. Section 2.6.5 will

elaborate on the use of the update streams.

1https://github.com/ldbc/ldbc_snb_datagen_hadoop
2https://github.com/ldbc/ldbc_snb_datagen_spark

19

https://github.com/ldbc/ldbc_snb_datagen_hadoop
https://github.com/ldbc/ldbc_snb_datagen_spark

2. BACKGROUND

• Raw data: Parquet files containing all the generated temporal graph data.

Both Spark and Hadoop Datagen simulate a graph over three years. However, the cut-off

between the initial snapshot and update streams differs: Spark datagen uses 97% of the

data for the initial snapshot and 3% for the update streams while Hadoop has a 90%/10%

split. Datagen provides the parameters for the update operations: the update streams

contain the parameters for the entities and edges.

Table 2.4 shows an overview of update queries present in Interactive v1.0. Each update

query comes with a creation timestamp: this timestamp is used by the driver to schedule

an update operation during the benchmark.

Update operation Description
1 Add Person Add a Person (node) to the graph
2 Add like to Post Add an edge between a Person and Post denoting a like
3 Add like to Comment Add an edge between a Person and Comment denoting a like
4 Add Forum Add a Forum (node)
5 Add Forum Membership Add an edge between a Person and a Forum
6 Add Post Add a post (node) in a forum
7 Add Comment Add a comment (node) in a forum (can be a reply to other

comment or reply to post)
8 Add Friendship Add an edge between two Person nodes

Table 2.4: Overview of update queries used in Interactive v1.0.

In Interactive v1.0, the user needs to specify the number of write threads before gener-

ating the data using the Hadoop Datagen. It exports the update stream files partitioned

using a Round-Robin strategy. For example, if a user requests 32 write threads, the data

generator will split the person event CSV file into 32 files and the forum CSV files into 32

files, resulting in 64 files. Meanwhile, the Spark Datagen generates the update stream files

in CSV files stored separately by type, batched per day. The number of CSV files can dif-

fer depending on the number of partitions set for Spark. The Spark Datagen additionally

outputs update streams for delete operations.

The size of the network depends on the scale factor used. For example, a scale factor of

SF300 results in 1,230,500 persons and the total network data has a size of approximately

300 GiB when serialized as CSV files.

20

2.6 The LDBC Social Network Benchmark

2.6.2 Choke Points

The LDBC SNB Interactive workload is designed by choke points: a choke point is an aspect

of query execution or optimization that is currently a technical challenge for DBMSs (18).

There are multiple types of choke points: Aggregation performance, Join Performance, Data

Access Locality, Expression Calculation, Correlated Sub-Queries, Parallelism and Concur-

rency, Language features, Update operations and Graph specific operations. The full details

of all choke points are provided in (1). In this section, we discuss some of the graph-specific

choke points.

Unweighted shortest paths: test the ability to compute the distance values between

a node and a set of nodes.

Composition of graph queries: tests the support of composable graph queries in the

database system. Composable graph queries are multiple graph queries where the first one

defines a subgraph which is then passed to the next query.

Reachability between disconnected components: tests the path-finding queries

whether in a single-source single-destination search the database system can assert quickly

if a path does not exist, for example, by using bidirectional path-finding algorithms or

running connected components as a preparatory step.

2.6.3 Query Templates

The SNB workloads use pre-defined query templates to issue queries against the data set.

A query template is an expression with substitution parameters, also known as parameter

bindings, that are replaced by the workload generator with parameters for the data set

to make the benchmark results understandable. These parameters need to be selected

carefully such that the benchmark queries have stable behavior when the data set contains

skewed data distributions and data correlations (28).

An example of a query in the Interactive workload is Query 3, pattern shown in Fig-

ure 2.7, where given a personId, it finds persons that are friends and friends of friends that

made posts/comments in both given countries in a given time interval. The query template

is given in Listing 2.5. In this example the query template has 5 parameters that need

to be substituted by the workload generator: personId, countryXName, countryYName,

startDate and durationDays.

21

2. BACKGROUND

Figure 2.7: Query template Query 3 (1). The dashed red lines note negative conditions, i.e.,
these edges must not exist in the graph.

1 SELECT
2 Person.id AS otherPersonId , Person.firstName AS otherPersonFirstName ,
3 Person.lastName AS otherPersonLastName , ct1 AS xCount ,
4 ct2 AS yCount , totalcount AS count
5 FROM (
6 SELECT Person2Id FROM Person_knows_Person
7 WHERE Person1Id = :personId
8 UNION
9 SELECT k2.Person2Id FROM Person_knows_Person k1, Person_knows_Person k2

10 WHERE k1.Person1Id = :personId AND k1.Person2Id = k2.Person1Id
11 AND k2.Person2Id <> :personId
12) friend , Person , City , Country ,
13 (
14 SELECT chn.CreatorPersonId , ct1 , ct2 , ct1 + ct2 AS totalcount
15 FROM (
16 SELECT CreatorPersonId AS CreatorPersonId , count (*) AS ct1
17 FROM Message msg , Country
18 WHERE LocationCountryId = Country.id AND Country.name = :countryXName
19 AND msg.creationDate >= :startDate
20 AND msg.creationDate < (: startDate + INTERVAL '1␣days' * :durationDays)
21 GROUP BY CreatorPersonId
22) chn , (
23 SELECT CreatorPersonId AS CreatorPersonId , count (*) AS ct2
24 FROM Message msg , Country
25 WHERE LocationCountryId = Country.id AND Country.name = :countryYName
26 AND msg.creationDate >= :startDate
27 AND msg.creationDate < (: startDate + INTERVAL '1␣days' * :durationDays)
28 GROUP BY CreatorPersonId
29) ind
30 WHERE chn.CreatorPersonId = ind.CreatorPersonId
31) cpc
32 WHERE friend.Person2Id = Person.id AND Person.LocationCityId = City.id
33 AND City.PartOfCountryId = Country.id AND Country.name <> :countryXName
34 AND Country.name <> :countryYName AND friend.Person2Id = cpc.CreatorPersonId
35 ORDER BY totalcount DESC , Person.id ASC
36 LIMIT 20;

Listing 2.5: Query template LdbcQuery3 formulated in SQL from the Interactive implemen-
tation

22

2.6 The LDBC Social Network Benchmark

2.6.4 Parameter Curation

In order to have interpretable runtime measurements of the performance of the system,

parameter curation is applied to the selection of query parameters. Parameter curation

transforms the behavior of benchmarks from unpredictable, often multi-modal distribu-

tions, into an approximate normal distribution for the same query template (28). Without

parameter curation, data sets with skewed data distributions and value correlations show

unstable behavior: the same benchmark query can have runtimes with high variance.

The factor tables contain parameters extracted from the generated data used by param-

eter curation, which selects parameters with similar properties, e.g., days with roughly

similar frequencies of messages created and countries with similar message frequencies.

Table 2.5 shows examples of statistics from three factor tables.

creationDay numMessages Country numMessages Language frequency
2012-09-12 76,210 Germany 940,725 en 1,220,272
2012-09-13 75,773 South Africa 251,320 zh 209,173
2012-09-14 79,874 Chile 253,417 es 123,670
2012-09-15 110,976 Netherlands 222,750 fr 92,034
2012-09-16 130,475 England 226,764 ar 68,651
2012-09-17 92,977 India 4,822,947 ru 57,005
2012-09-18 78,218 Japan 898,030 de 48,907
2012-09-19 77,079 United States 867,166 ur 45,498
2012-09-20 77,684 Spain 277,857 pt 38,867

Table 2.5: Example of three factor tables from Datagen: (left) daily bucketized number
of messages, (middle) number of messages created per country, (right) number of messages
grouped by language.

Parameter curation in SNB v1.0 The parameter curation in v1.0 uses an algorithm

that first searches for parts in the factor tables with the smallest variance across for each

column, called windows. For each column, the windows are then merged with windows

also having the smallest variance. This continues until there are no windows left or the

last column is reached. The output of the parameter generation is a file for each query

containing the substitution parameters.

2.6.5 Operations in the Interactive Workload

The Interactive workload targets DBMSs capable of processing graph workloads that com-

bine transactional updates with query capabilities. There are three classes of queries:

transactional update queries, consisting of the insert operations pre-generated by the SNB

23

2. BACKGROUND

data generator, e.g., update operations are the addition of friendships, forums, posts/-

comments, and likes to a post/comment. Complex read-only queries retrieve information

about the social environment of a given person (one-, two, or three-hop neighborhoods)

and perform path-finding. Thirdly, there are simple short read-only queries that per-

form lookups on information about someone’s profile and post information. Systems are

expected to compete on achieving a high Time Compression Ratio (TCR−1), which com-

presses/stretches the duration between the scheduled creation timestamp to increase (or

decrease) the operation rate (1, p9). For example, a TCR−1 of 10 means that the system can

execute the workload 10× faster than it was modeled to occur, namely, the simulation time.

2.6.5.1 Tracking Dependencies

To allow scalable benchmark execution, a transactional workload must be partitioned into

streams that are issued concurrently against the system under test (SUT) (18). However,

the update streams containing the insert queries are not trivial to partition since update

operations may depend on each other: to create a friendship, the two persons must exist in

the network. Likewise, one can only reply to a message once posted. While the messages

can be partitioned, e.g., by grouping the dependent messages, the person network with the

friendship edges cannot. To enable concurrent update streams that have dependencies, the

driver tracks the dependencies based on the operation type and its scheduled simulation

time. Every operation has a Tdue time representing the simulation time at which that

operation is scheduled to execute. Each update operation belongs to none, one, or both

of two types of sets: Dependencies and Dependents (18, Section 4.2). Dependencies are

operations that introduce a dependency in the workload, for example, creating a person

with corresponding information in the network. Dependents contain operations dependent

on at least one other operation in the Dependencies sets. Therefore, operations in the

dependent set cannot be executed until the corresponding operation from the dependen-

cies is executed. The Datagen however ensures that there is a minimum time duration,

Tsafe, between dependent operations to reduce synchronization overhead in the driver when

executing operations. The driver then only needs to check every Tsafe time if an operation

can be executed. By default, Tsafe is set to 10 seconds in the simulation time.

The driver tracks the latest point that every operation with a Tdue lower or equal to this

time is guaranteed to have completed execution (18) by maintaining a completion time

service. In this service, the Dependencies operations’ time stamps are registered first in

24

2.6 The LDBC Social Network Benchmark

the Initiated Times (IT) set and, after completion, removed from IT and added to the

Completion Times (CT). Timestamps can only be added to the IT in a monotonically

increasing order but can be removed in any order. Each update operation stream tracks

the initiated and completion times. It does this by writing the start and completion times,

which is monitored by the completion time service. The simulated timestamp is multiplied

with the TCR−1, compressing/stretching the timestamps for the scheduled start times. If

during the execution of the workload the driver waits before executing the next operation

due to the dependent time, this is a sign that the SUT cannot keep up with the workload,

hence, a lower TCR−1 should be chosen.

2.6.5.2 Workload Creation

To create the workload, the user specifies the properties required for loading and execution,

summarized in Listing 2.6. The driver loads the update stream files as separate workload

streams. Once loaded, the driver reads the lowest start time of all the streams to deter-

mine the start time of the workload. Next, the driver schedules the complex read queries

depending on the update interleave and the frequency of each query type. The update

interleave denotes the average time between each update operation and is calculated as

follows:

update interleave (in ms) = (Tend − Tstart)
total operations

(2.1)

1 thread_count =1
2 time_compression_ratio =0.05
3

4 warmup =6000 # Number of operations during warmup
5 operation_count =30000 # Number of operations during benchmark
6

7 ldbc.snb.interactive.scale_factor =10

Listing 2.6: Example of benchmark properties

The frequency of each query is different depending on the scale factor specified by the

user: the rationale behind the frequencies is to balance the total runtime of each complex

query type such that the total runtimes are approximately the same per query. The

frequencies make each query equally important for the benchmark score and it ensures

that the choke points are stressed sufficiently. To calculate the time between instances of

a complex query of the same type, we use the following formula:

query interleave (in ms) = fquery × update interleave (2.2)

25

2. BACKGROUND

The driver schedules the complex read queries by setting the start time of the update

streams and increasing the start time monotonically using the query interleave. Figure 2.8

shows an example of the scheduling of the queries. In the Interactive v1.0 workload, the

user needed to provide the correct frequencies per scale factor. To improve usability, we

changed this to include the frequencies in the driver (since these are after they are specified

not changed).

42094 ms

Q1

42094 ms

Q1

Q1

42094 ms

59903 ms

59903 ms

Q2

Start time update streams

Q2

25904 ms

Q11

Q11

Q11

Q11

25904 ms

25904 ms

25904 ms

T0

Figure 2.8: Example of scheduling of complex read queries with an update interleave of 1619
ms and frequencies Query1=26, Query2=37 and Query11=16, see Equation 2.2

The short read queries are not scheduled during the initialization of the workload. Dur-

ing the execution of the benchmark, the results of some complex and short read queries

provide the starting points for the short read queries. Appendix A shows the queries that

give input parameters to the short read queries. The results are added to a buffer contain-

ing person IDs and message IDs used after execution. The short reads are executed after

each eligible complex read operation. The amount of short reads executed depends on the

result size of that long read operation, and the type of short reads depends on whether the

result contains person IDs and message IDs. The short reads use an interleave that equals

the update interleave multiplied by the TCR−1. After each execution, the probability that

a short read executes diminishes with the short read dissipation factor. This factor deter-

mines the threshold number when a new short read executes after a random “coin-toss”.

26

2.6 The LDBC Social Network Benchmark

2.6.5.3 Benchmark Execution

After the initialization of the workload, the driver executes the workload in two phases: a

warmup phase and a measurement window. The warmup phase puts the system in a steady

state as it would behave in a normal operating environment and is, therefore, not part of

the measurement. Both phases depend on the number of operations the user sets in the

properties file. To achieve a two-hour run, the user needs to set the number of operations

by using the expected throughput, for example, with a throughput of 3,000 operations/s:

operation count = throughput [1
s
] × duration [s] (2.3)

21,600,000 = 3,000 × 7,200 (2.4)

The execution of the workload by the driver requires a client implementation of the SUT.

The driver provides interfaces that a user implements to handle the workload. The client

implementation should implement execution handlers for each workload query, parsers for

each query’s results, and a class that handles connections with the SUT.

2.6.5.4 Cross-Validation

To determine whether the SUT produces correct results, the driver offers two modes: the

creation of validation parameters and validation using results from another system. With

the creation of the validation parameters, the result of each query is stored together with

its substitution parameters in a CSV file. This CSV file can then be used against other

DBMSs using the validation mode to cross-validate whether the results are the same. The

number of validation parameters generated needs to be sufficiently high to cover multiple

instances of all queries. To create the validation parameters, sequential execution is used.

If the creation of validation parameters would be done in a multithreaded concurrent run,

the query answers may be different due to different execution orders and would therefore

not guarantee deterministic results.

2.6.6 Implementation

To run the benchmark, an implementation has to be created for the system under test. An

implementation consists of the following elements:

27

2. BACKGROUND

• Query Templates: The query templates are specific to the implementation’s sup-

ported language and features. These can, for example, be written declaratively in

SQL or imperatively in a programming language like C++.

• Operation Handler: The operation handler handles the execution of a query. An

implementation can have multiple operation handlers.

• Connection Client: The connection client that the interactive driver operation

handler uses.

• Converters: Converters are used to change parameters to implementation-specific

formats. This can for example be a datestamp in a specific format.

2.6.7 ACID Compliance

The verification of ACID compliance in the benchmarking process is required to enable

a fair comparison between systems, since the performance benefits of weaker safety guar-

antees are known, including potentially incorrect query results (70). ACID stands for

Atomicity, Consistency, Isolation, and Durability. These properties ensure that a transac-

tion always leaves the database in a valid state:

• Atomicity: ensures that either all operations in a transaction are performed or

none.

• Consistency: the database remains consistent during the execution of transactions

in isolation. Additionally, each transaction takes the database from one consistent

state to another.

• Isolation: The DBMS must ensure that each transaction is unaware of other transac-

tions executing concurrently. There are several isolation levels: Serializability, which

is the most strict isolation level, Read Committed, which guarantees that any data

read is committed at the time it is read by the SELECT statement in the same trans-

action. Lastly, Snapshot Isolation, which guarantees that all reads in a transaction

will see a consistent snapshot of the database.

• Durability: After a successful transaction, the changes in the database persist, even

in case of a system failure.

The ACID tests are separate from the Interactive driver and are outside the scope of

this thesis.1

1https://github.com/ldbc/ldbc_acid

28

https://github.com/ldbc/ldbc_acid

Part I

SNB Interactive v2.0

29

3

Design & Implementation

This thesis aims to add support for deletions and scale factors above SF1,000 in the Inter-

active workload, approximate the number of persons for scale factors above SF3,000, and

to create a reference architecture for a distributed driver. Implementing deletes requires

extensive changes in the driver and the parameter generation: the driver needs to be aware

of temporal substitution parameters and support the data produced by the Spark Datagen,

described in Section 2.6.1. In addition, we introduce new variants for Query 3, 13, and 14,

where Query 14 comes with a new definition compared to v1.0. This chapter will describe

the key components of the upgraded driver and the changes introduced when migrating

from the Hadoop data set to the Spark data set. These changes affect the implementa-

tions repository, where reference implementations are updated to support the new data

set, naming convention, CSV schemas, and queries. Figure 3.1 gives an overview of the

components with the changes highlighted in blue.

3.1 Overview

This section describes the changes in the Interactive workload’s components. Section 3.2

discusses the changes in the driver required to support the new Spark Datagen containing

the delete operations and support for larger scale factors. In Section 3.3, we discuss the

time-aware scalable parameter curation, enabling parameter selection for entities inserted

and deleted during the execution of the benchmark, as well as a new method to curate

path-query parameters. The different sections come together in Section 3.4 when we discuss

updating the driver.

31

3. DESIGN & IMPLEMENTATION

Datagen

Parameter
Generation

[DuckDB, NetworKit]

Driver

[Java, DuckDB]

Client
(SUT specific implementation)

Factor Tables

Batch to stream converter with dependency
tracking [DuckDB]

Initial snapshot

System under test

Batch data loader

(SUT specific)

Raw Temporal Graph

Update streams v1.0

Update Streams v2.0

Parameters v1.0

Parameters v2.0
Q1/day 1

Q2/day 1
Q3a/day 1

Q1/day 2
Q2/day 2

Q3a/day 2

Figure 3.1: Schematic overview of key changes in the Interactive benchmark. The changes
are colored blue. The data artifacts are colored grey. Components part of LDBC SNB but not
changed in this thesis are marked yellow. Components not part of LDBC SNB are marked
orange.

32

3.2 Migrating the Driver from the Hadoop Datagen to the Spark Datagen

3.2 Migrating the Driver from the Hadoop Datagen to the
Spark Datagen

We migrate the driver from using data sets produced by the Hadoop Datagen to the Spark

Datagen to add support for deletions and larger scale factors. As covered earlier, the Spark

Datagen includes temporal entities with lifespan attributes for deletions. This feature was

implemented in the LDBC Spark Datagen by Waudby et al. (71). The entities and edges

have a creation date and deletion date, as shown in Figure 3.2.

Person_knows_Person

creationDate: 01-02-2022

deletionDate: 01-03-2023

Person P1

creationDate: 15-06-2016

deletionDate: 27-08-2023

Person P2

creationDate: 03-02-2015

deletionDate: 23-04-2023

Figure 3.2: Example of lifespan management of an entity and edges. Each node and vertex
has a creationDate and deletionDate specified.

The Spark Datagen exports the update streams in a different format than the Hadoop

Datagen. Hadoop exports the update streams depending on the number of write threads,

pw, specified by the user, resulting in pw update stream files with person updates and

pw forum files containing the insert queries 2 to 8 (Table 2.4). Spark exports the update

streams in a separate folder, depending on whether it is a delete or insert operation. How-

ever, the update streams of the Spark Datagen lack the dependent time column required

by the interactive driver to track the dependencies during execution. Hence, as part of this

thesis, we introduce the dependent time columns to the update streams produced by the

Spark Datagen.

3.2.1 Creating the Dependent Time Column

The dependent time column contains the time of the entity (dependency) to which the

update is dependent. In the Hadoop Datagen, the dependency time was determined in-

correctly by basing the dependency time on the creation date of a Person entity or the

author of a message. However, this approach is only correct in some cases since updates

regarding comments, posts, and forums can have a dependent time that is more recent

than the creation date of a person. However, Figure 3.3 shows an example of a comment

with dependencies where the creation date of the replied comment is more recent than the

33

3. DESIGN & IMPLEMENTATION

creation date of the person.

Comment
creationDate: 2011-08-10

Person

creationDate: 2010-02-03

hasCreator replyOf

Comment
creationDate: 2011-08-11

Figure 3.3: Example of an entity with dependencies.

To select the dependency time for each entity, we define the dependencies for each update

query, shown in Table 3.1. Note that only adding a person to the graph has no depen-

dencies. Other insert queries rely on the creation date of the person or entity to which

it has an edge. Delete operations depend on the entity’s creation date or one of the end

nodes when a delete query touches an edge. In the example of the message, a message

has an author, but the message can be a reply to another message, having a total of two

dependencies.

Type Query/Entity Dependency
Insert AddPerson No dependency
Insert AddLikeToPost Greatest creationdate between Person and Post liked
Insert AddLikeToComment Greatest creationdate between Person and Comment liked
Insert AddForum Person creationdate (moderatorPerson)
Insert AddForumMembership Greatest creationdate between Person and Forum
Insert AddPost Greatest creationdate between Person and Forum Post belongs to
Insert AddComment Greatest creationdate between Person and Comment replied to
Insert AddFriendship Greatest creationdate of both persons
Delete DeletePerson Creationdate of Person
Delete DeletePostLike Greatest creationdate of Person, Post
Delete DeleteCommentLike Greatest creationdate between Person and Comment liked
Delete DeleteForum Creationdate of Forum
Delete DeleteForumMembership Creationdate of Person or Forum
Delete DeletePost Creationdate of Post
Delete DeleteComment Creationdate of Comment
Delete DeleteFriendship Creationdate of knows edge between Person1 and Person2

Table 3.1: Update query with the attribute(s) used to determine dependency time.

34

3.2 Migrating the Driver from the Hadoop Datagen to the Spark Datagen

Raw

Parquet

Table
Add dependency

time Export to parquet

TStart

TEnd

Figure 3.4: Creation of the update streams. The rows from the Parquet file from the time
split TStart are extracted and afterward the dependency time is added depending on the entity.
The result is exported to Parquet.

3.2.2 Exporting Update Streams

We create the update streams using the raw Parquet files (see Section 2.6.1), which contain

all the information about the graph. The motivation to use the Parquet files instead of

merging the CSV files is that by using the Parquet files directly, we combine the extraction

of the dependency time with the creation of the update streams and fewer files need to be

loaded. To select all entities that are part of the update stream, we use the split defined

in the Spark Datagen: 97% of the simulation time in epoch milliseconds is in the initial

snapshot, and 3% is for the update streams.

To set the dependency time, we must select for each dependent entity the most recent

creation date of the dependencies, which we can select from the raw Parquet files using

DuckDB (49), running embedded (in-process) in the benchmark driver. DuckDB enables

us to directly query Parquet files using SQL. The process is shown in Figure 3.4. The

addition of the dependency time can require joins with multiple large tables, for example,

the Comment table and Comment_hasTag_Tag, potentially leading to out-of-core operations

for larger scale factors. To mitigate this, we batch the creation of the update streams,

creating an update stream file per batch. After all the rows have been loaded, the batches

are merged into a single Parquet file.

Listing 3.1 shows an example of the SQL query selecting the comments for the in-

sert operations together with the dependency time. This is batched by exporting a

Comment-*.parquet file per batch. In contrast, Listing 3.2 shows the SQL query for

selecting the comments for the delete operations which does not require batching. The

results are 16 Parquet files containing the update streams, one for each update operation

type.

35

3. DESIGN & IMPLEMENTATION

1 COPY (
2 SELECT
3 c1.creationDate ,
4 greatest(Person.creationDate , c2.creationDate) AS dependencyTime ,
5 c1.id , c1.locationIP , c1.browserUsed , c1.content ,
6 c1.length , c1.CreatorPersonId , c1.LocationCountryId ,
7 c1.ParentPostId , c1.ParentCommentId ,
8 string_agg(DISTINCT Comment_hasTag_Tag.TagId , ';') AS tagIds
9 FROM Comment c2, Person , Comment c1

10 LEFT JOIN Comment_hasTag_Tag
11 ON Comment_hasTag_Tag.CommentId = c1.id
12 WHERE c1.creationDate > :start_date_long
13 AND c1.creationDate < :end_date_long
14 AND Comment_hasTag_Tag.creationDate > :start_date_long
15 AND Comment_hasTag_Tag.creationDate < :end_date_long
16 AND c1.ParentPostId IS NULL AND c2.id = c1.ParentCommentId
17 AND c1.CreatorPersonId = Person.id
18 GROUP BY ALL
19 ORDER BY c1.creationDate
20)
21 TO ':output_dir/inserts/Comment -: index.parquet ' (FORMAT 'parquet ');

Listing 3.1: Example of a SQL query to determine the dependency time for a comment
insert using DuckDB.

1 COPY (SELECT deletionDate , creationDate AS dependentDate , id
2 FROM Comment
3 WHERE deletionDate > :start_date_long
4 AND explicitlyDeleted = true
5 ORDER BY deletionDate ASC)
6 TO ':output_dir/deletes/Comment.parquet ' (FORMAT 'parquet ');

Listing 3.2: Example of a SQL query to determine the dependency time for a comment
delete using DuckDB.

3.3 Time-Aware Scalable Parameter Curation

Using the Spark Datagen has the effect that the format of the factor tables is different: v1.0

uses CSV factor tables from Hadoop Datagen for the parameter generation and curation

whilst the Spark Datagen uses Parquet factor tables. In addition, the Hadoop Datagen

factor tables only include parameters and statistics that were included in the initial snap-

shot: inserted entities where not taken into account. Therefore, the parameter generation

in Interactive v1.0 (see Section 2.6.4) did not have to take the temporal aspects of the

workload into account. The parameters generated in Interactive v1.0 where then used

during the entire simulation time of the benchmark.

For v2.0, the factor tables exported from the Spark Datagen contain parameters with

statistics using the entire simulation time, including nodes and edges that are inserted and

deleted (part of the update streams). This however leads to problems when selecting pa-

36

3.3 Time-Aware Scalable Parameter Curation

rameters since the parameter is only valid for some time since nodes and edges can be added

and deleted throughout the simulated time affecting the statistics. Additionally, parame-

ters present in the factor table may not exist at the start of the benchmark or are removed

during the benchmark. To mitigate this problem, the new parameter generator selects

parameters in daily batches based on the creation and deletion time of the parameter. The

factor tables are loaded using DuckDB to enable us to select parameters using SQL queries.

3.3.1 Selecting Factor Tables

For the parameter selection, we determine for each query which factor tables are required.

Selecting the factor tables should be done to approximate the intermediate cardinalities

for a query given a parameter. We provide the description of each query from the spec-

ification (1) together with the pattern, then we elaborate on which factor tables to use.

We highlight some queries to show the design and selection process. The remainder of the

queries is shown in Appendix B.

Query 1

Given a start Person with ID $personId, find Persons with a given first name

($firstName) that the start Person is connected to (excluding start Person)

by at most 3 steps via the knows relationships. Return Persons, including the

distance (1..3), summaries of the Persons’ workplaces and places of study. (1)

Figure 3.5: Pattern of LDBC SNB Interactive Complex Read 1

For each $personId parameter in Query (Figure 3.5), we want a similar number of persons

in the third hop. For this, we use the personNumFriendsOfFriendsOfFriends factor table

to select person IDs with a similar number of friends in the third hop. To select the

$firstName parameter, we use the personFirstNames factor table, containing a list of

first names together with the frequency of occurrence in the graph.

37

3. DESIGN & IMPLEMENTATION

Query 2

Given a start Person with ID $personId, find the most recent Messages from all

of that Person’s friends (friend nodes). Only consider Messages created before

the given $maxDate (excluding that day). (1)

Figure 3.6: Pattern of LDBC SNB Interactive Complex Read 2

Query 2 (Figure 3.6) requires us to know the amount of Messages the friends of the selected

person ID with dates before a selected $maxDate. There is no direct factor table that can

be used to know the amount of Messages for a given date for a given person ID. While

we could use the personNumFriendComments table to select a person ID with a similar

amount of comments made by friends, this only gives us the number of comments during

the whole simulation time frame, so depending on the scheduled time it may not be a good

approximation. Therefore, we select a person ID based on the number of friends using the

personNumFriends table, together with the creationDayNumMessages, which gives us the

number of comments in the graph made for a given date. This lets us select dates where

the number of comments have smaller differences.

Query 3a and 3b

Given a start Person with ID $personId, find Persons that are their friends

and friends of friends (excluding the start Person) that have made Posts / Com-

ments in both of the given Countries (named $countryXName and $countryYName),

within [$startDate,$startDate + $durationDays) (closed-open interval). Only

Persons that are foreign to these Countries are considered, that is Persons

whose location Country is neither named $countryXName nor $countryYName. (1)

Query 3a and 3b (Figure 3.7) will search up to the second hop friends for posts and com-

ments made in a time interval. The posts need to be in locations different than the author

of the post. For this query, Interactive v2.0 has two variants: Query 3a, which has two

countries that have a high correlation in the friendship network and Query 3b, with anti-

correlated countries: countries that do not have a high frequency of friendships between

38

3.3 Time-Aware Scalable Parameter Curation

Figure 3.7: Pattern of LDBC SNB Interactive Complex Read 3

persons. To select the countries, we can use the countryPairsNumFriends table, which

contains the names of country pairs together with the number of friendships between those

countries. An example of correlated and anti correlated countries is shown in Table 3.2.

For Query 3a, we select countries with high frequencies and for 3b countries with low

frequencies. To select a suitable person ID, we can use the personNumFriendsOfFriends

table which contains the number of friendships in the second hop. Lastly, we use the

creationDayNumMessages to select a range of dates with a similar amount of messages

posted/commented in the network.

Correlated Anti-Correlated
CountryXName CountryYName Frequency CountryXName CountryYName Frequency
Japan Philippines 2973 Angola Croatia 1
Indonesia Sri Lanka 2993 Angola Denmark 1
Egypt Turkey 3011 Angola Hong Kong 1
England United Kingdom 2932 Angola Libya 1
Moldova Ukraine 3023 Angola Lithuania 1

Table 3.2: Examples of correlated and anti-correlated country pairs from the country-
PairsNumFriends factor table.

Query 4

Given a start Person with ID $personId, find Tags that are attached to Posts

that were created by that Person’s friends. Only include Tags that were attached

to friends’ Posts created within a given time interval [$startDate, $startDate

+ $durationDays) (closed-open) and that were never attached to friends’ Posts

created before this interval. (1)

For Query 4 (Figure 3.8) we want a person parameter with a similar number of direct

friends and a start date with a similar amount of messages created. Therefore, we use the

creationDayNumMessages factor table to select a suitable date and the personNumFriends

39

3. DESIGN & IMPLEMENTATION

Figure 3.8: Pattern of LDBC SNB Interactive Complex Read 4

table to select a person with a similar number of friends. The number of durationDays is

generated by generating a series from 1 to 20.

Query 5

Given a start Person with ID $personId, denote their friends and friends of

friends (excluding the start Person) as otherPerson. Find Forums that any

Person otherPerson became a member of after a given date ($minDate). For

each of those Forums, count the number of Posts that were created by the Person

otherPerson. (1)

Figure 3.9: Pattern of LDBC SNB Interactive Complex Read 5

In Query 5 (Figure 3.9), the first- and second-degree friendships are taken into account.

We use the personNumFriendOfFriends factor table to select a person ID with a similar

second-degree friendship size. During the query, the forum memberships of each friend and

friend of friends are checked to ensure that they are after a certain date. Therefore, we

select person IDs with a similar amount of forum counts as well, which are provided in the

personNumFriendOfFriendForums. PersonIDs are then selected when they occur in both

selections.

40

3.3 Time-Aware Scalable Parameter Curation

Figure 3.10: Pattern of LDBC SNB Interactive Complex Read 13

Figure 3.11: Pattern of the new LDBC SNB Interactive Complex Read 14

41

3. DESIGN & IMPLEMENTATION

Query13 and 14

Query 13 (Figure 3.10) and 14 (Figure 3.11) are path-finding queries: they give the short-

est/cheapest path between two persons and return the path. Interactive v2.0 introduces

variants for both queries: 13a and 14a do not contain a path between the two persons

while 13b and 14b do contain a path. To select suitable person pairs which have a path,

we use the people4Hops factor tables (containing pairs of Person nodes who have a 4-hop

path between them at some point). In Section 3.3.3 we elaborate on selecting paths from

the people4Hops factor table.

Query 13a and 14a Query variants 13a and Query 14a do not have a path between the

two persons. For both queries, we select person IDs from a different component using the

personKnowsPersonConnected table. This table contains person IDs together with the

connected component it is part of and the count of that component: since not all persons

are part of the same connected component, we select a person IDs from two different

components.

Query 13b For Query 13b, we need to select two person IDs from the people4Hops

table, which provides us with two person IDs with a path 4 hops away. Additionally, we

need to select the person IDs that have similar number of friends in the first and second

hop, which the personNumFriendOfFriends table provides.

Query 14b With Query 14b, we also need to select two person IDs from the people4Hops

table. In contrast with Query 13b, which does not use edge weights, we also need in-

formation about the number of interactions in the path between the two persons. The

personNumFriendComments provides the counts of comments made by friends and direct

comments by the selected person. It does not however provide information about posts

made by other persons, which fall in the Message category. This results in currently no

factor table suitable to determine the amount of messages.

3.3.2 Parameter Selection

With the selected factors tables, we now need to select suitable parameters. To select the

parameters from the factor table, we use two approaches depending on the factor table: a

selection using window functions to select similar parameters on the entire factor table and

aggregate functions to select portions of a distribution in the factor table. The selected

42

3.3 Time-Aware Scalable Parameter Curation

parameters are then stored in temporary tables and then used in the parameter selection

step per query where the parameters are selected per day.

Selecting Windows

To find windows with the smallest variance in the factor table, we use window functions.

The parameters are first sorted and grouped together based on the difference in frequency.

Groups that are smaller than a given minimum threshold are discarded to select a group of

parameters large enough to generate a sufficient amount of parameters. Finally, we select

the group with the smallest standard deviation. An example of a SQL query used with

DuckDB that selects personIds with a similar number of friends of friends using the de-

scribed approach is shown in Listing D.1. In this example, we group the parameters where

the maximum difference between the next neighbor is 5, if higher it will start a new group.

Usually, the second derivative of a function gives the bending points. However, with our

distribution this is not suitable given the almost linear increase of the number of friends

of friends, creating windows that are too large. Therefore, using the first derivative with a

threshold provides us with more control of the window sizes. Increasing the maximum dif-

ference will allow for larger groups but higher variance. Lowering the maximum difference

will lower the variance and smaller group sizes, which can result in too small windows,

hence a low amount of selected parameters. In Appendix C we show a visualization of the

selection process. Appendix D shows an example of the selection of daily parameters for

Query 1 which makes use of the resulting selected windows.

1 -- Group parameters and assign
2 WITH grouped_parameters AS (
3 SELECT
4 *, SUM(CASE WHEN Groups.diff < 5 THEN 0 ELSE 1 END)
5 OVER (ORDER BY Groups.RN) AS groupId
6 FROM
7 (
8 SELECT ROW_NUMBER () OVER(ORDER BY numFriendsOfFriends) AS RN ,
9 Person1Id , numFriendsOfFriends , creationDate , deletionDate ,

10 abs(LAG(numFriendsOfFriends , 1)
11 OVER (ORDER BY numFriendsOfFriends ASC) - numFriendsOfFriends
12) AS diff
13 FROM personNumFriendsOfFriendsOfFriends
14 WHERE numFriendsOfFriends > 0
15) Groups
16),
17 -- Select group with smallest deviation with minimum group size
18 selected_group AS (
19 SELECT groupId , occurrence , deviation
20 FROM (
21 SELECT groupId , count(groupId) AS occurrence ,

43

3. DESIGN & IMPLEMENTATION

22 stddev_pop(numFriendsOfFriends) as deviation
23 FROM grouped_parameters
24 GROUP BY groupId
25) group_stats
26 -- Miminum group size
27 WHERE group_stats.occurrence > 100
28 ORDER BY deviation ASC
29 LIMIT 1
30)
31

32 SELECT *
33 FROM grouped_parameters , selected_group
34 WHERE grouped_parameters.groupId = (SELECT groupId FROM selected_group)

Listing 3.3: Example of selection of parameters using window function

Selecting Distributions

For queries where we want to select parameters that are correlated and anti-correlated, we

select the parameters based on the percentile rank in the distribution using the percentile_disc

function in DuckDB. An example is shown in Listing 3.4 where we select countries with

high friendship correlation. Figure 3.12 shows the resulting selection of correlated and

anti-correlated countries.

1 SELECT
2 country1Name AS countryXName ,
3 country2Name AS countryYName ,
4 frequency AS freq ,
5 abs(frequency - (
6 SELECT percentile_disc (1)
7 WITHIN GROUP (ORDER BY frequency)
8 FROM countryPairsNumFriends
9)

10) AS diff
11 FROM countryPairsNumFriends
12 ORDER BY diff , country1Name , country2Name
13 LIMIT 25

Listing 3.4: Example of selection of countries with high friendship correlation using per-
centiles

3.3.3 Path Curation

Interactive v2.0 has two path-finding queries: Query13 shortest path and a redesigned

Query14, cheapest path. Both have two variants: one where a path is guaranteed to exist

and one where no path exists. To select the paths, the factor table people4Hops can be

used, containing the source and destination person IDs. While this factor table consists of

44

3.3 Time-Aware Scalable Parameter Curation

100 101 102 103

Country Pair Index

0

1000

2000

3000

4000

5000

Nu
m

be
r o

f f
rie

nd
sh

ip
s

Frequency of friendships between country pairs
High correlation
Low correlation

Figure 3.12: Selection of countries in the countryPairsNumFriends factor table on the
number of friendships between both countries using the percentile_disc function. Corre-
lated countries (red) are selected using percentile 1.0 and anti-correlated countries (green) are
selected using percentile 0.01.

the creation date for the source and end, it does not contain information about the persons

and creation dates of the edges between the nodes. The path does exist at some point in

time, but from the table it is unknown when. Paths can exist for a temporary time interval

or even multiple intervals. For v2.0, the deletion of persons and friendship edges in the

path also needs to be considered. An example of this problem is given in Figure 3.13,

with three hops for simplicity. While the problem of the statistics changing every day in

other factor tables, this project focuses on solving the problems with the paths, since not

curating the paths makes it difficult to distinguish the behaviors for the introduced variants.

To select valid paths, a table containing all valid paths with four hops distance is created

before generating the parameters. This is done by loading the person nodes with their

friendship edges into a network modeling library, networkit (57), where the benchmark

is played per simulation day of the benchmark. Since it is not feasible to compute all

shortest paths in the graph for larger scale factors, only the top 10 person IDs close to the

median of the number of numFriendsOfFriendsOfFriends are taken into consideration.

The algorithm for the path selection is shown in Algorithm 1. The path from the source

person to all other persons in the graph is then computed and only the 4-hop paths are

stored, together with the day it is valid. Smaller or larger hop paths are discarded.

45

3. DESIGN & IMPLEMENTATION

2012-12-10

2012-10-23

2012-10-2

1 Alice JohnRobert Chris Mary

2

2012-5-4 2011-7-122012-2-2 2012-10-2

Alice JohnRobert Chris Mary
2012-5-4 2011-7-122012-2-2

3
2012-10-2

Alice JohnRobert Chris Mary

4

2012-5-4 2011-7-122012-2-2

2012-10-2
Alice JohnRobert Chris Mary

2012-5-4
2011-7-12

2012-2-2

Eleanor Michael
2011-2-3 2012-6-5

2012-11-12

Chidi

Jamila

2012-6-7
2012-8-14

Eleanor Michael
2011-2-3 2012-6-5

Figure 3.13: Example of the problem of temporary paths in the Spark Data set.
(1) We start with a 3-hop path between Alice and John with the friendship edges labeled with
their creation date.
(2) Suppose the benchmark starts at 2012-9-1, the path between Chris and Mary does not
exist until 2012-10-2, making the path not suitable for the path queries where a path should
be guaranteed.
(3) The path can be shortened if friendship edges are added, e.g., between Michael and John
on 2012-10-23, reducing the total hops, thus lowering the complexity of the path between
Alice and John.
(4) Another possibility is that the edge between Mary and John is deleted at 2012-11-12, but
another path is formed at a later date, 2012-12-10, making the path valid again.

Algorithm 1 Path Curation algorithm for each day
Input: G, Tstart, Tend, Nsources, Ntargets

Output: node pairs with 4 hops during Tstart, Tend

for N in Nsources do
Mshortest pathsdistances = MultiTargetBFS(G, N ,Ntargets)
select IDs from M where distance == 4
store IDs together Tstart, Tend

end for

46

3.4 Updating the Driver

3.4 Updating the Driver

With the new update streams stored in a Parquet file grouped by the update query and

substitution parameters with a validity period, the driver needs to be updated to accom-

modate these changes. The interactive driver, implemented in Java, previously determined

the number of write threads by the number of files exported by the Hadoop Datagen and

the update streams were grouped by person update or forum and friendship updates, as-

signing one file per thread. This is not feasible with the new update streams since these

are grouped by query and the number of updates is different per query.

Scalable Update Stream Loading

Update1.parquet Update2.parquet Update3.parquet Update4.parquet

Batched Update Loader

(Separate Thread using DuckDB)

Loads and combines streams

Pool with execution threads

Bounded Blocking Queue

with batched streams

Operation Stream

Figure 3.14: Batched loading of the update streams using DuckDB

In v2.0, the way the update streams are loaded is changed: instead of the update streams

being executed in separate write threads, the update streams are executed within the same

threadpool as the reads, requiring only one threadpool, reducing synchronization overhead

between the separate threads when updating the completion time. In addition, using one

threadpool reduces the idle threads: in v1.0 the write threads, especially the ones only tak-

ing person updates into account, were mostly idle. The total threads used by the driver is

therefore the amount specified by the user using the properties file with the thread_count

property. An additional benefit of this approach is that the data does not have to be

47

3. DESIGN & IMPLEMENTATION

generated for different numbers of write threads.

To enable the update stream queries to be executed in the same threadpool of the read

queries, each update stream is loaded by creating a view on the Parquet file using DuckDB1,

running in the Java Virtual Machine (JVM). The data is then batch loaded using a sepa-

rate thread, where from each update stream the data is loaded for a given batch interval,

which is the amount of hours in simulation time to load. The batch interval is the sim-

ulation time window to load from the updates, reducing the memory usage of the driver

when using larger scale factors. The loaded data is then merged into one stream sorted

on the scheduled time of the updates. The stream is added to a blocking first-in-first-out

(FIFO) queue where the driver fetches the stream. The blocking queue is bounded and

when the queue is full, the loader will block until a slot is open. This way, when the driver

requests a new stream, there is always one available to prevent delay during the benchmark

execution. When the benchmark execution stops, the thread is interrupted and stopped

gracefully. The workflow is shown in Figure 3.14.

To set a suitable batch size, the mean updates per hour per scale factor needs to be

taken into account together with the throughput of the SUT. The batch size needs to be

large enough such that the batch loader loading time is smaller compared to the time it

takes to execute one batch.

Complex query execution using temporal parameters The substitution parame-

ters are loaded in the driver once and added to a generator where each complex query read

is generated according to the specified intervals. However, the execution of the complex

queries is changed in v2.0: the driver only executes a query if the parameter is in the

scheduled time interval. Therefore, each complex read operation has two properties: the

dependency time, the time from which it is valid to execute the query with given param-

eters and an expiry date: the time the parameter cannot be used, for example, because a

dependency has been deleted. When the driver encounters a query that is not in the valid

time window, it skips to the next query.

1https://duckdb.org/docs/data/parquet#inserts-and-views

48

https://duckdb.org/docs/data/parquet#inserts-and-views

3.5 Updating the Reference Implementations

3.5 Updating the Reference Implementations

The LDBC SNB Interactive workload has reference implementations to show an example

of how to correctly implement the workload. For Interactive v2.0, we updated the refer-

ence implementations for Neo4j, Postgres and Umbra 1 to include delete operations and

support for the data set produced by the Spark Datagen. To support the cascading delete

operations, Postgres and Umbra use foreign key constraints with ON DELETE CASCADE to

respect the semantic constraints. When, e.g., a person is deleted, the cascading delete

will remove linked forums, posts, descendant comments as well, as well as its edges. This

ensures that there are no dangling edges in the graph. With Neo4j, using OPTIONAL MATCH

in the delete query ensures cascading deletes to, e.g., replies of a comment that is deleted.

For both the Umbra and Postgres implementations, we provided a loader that can be

started in a Docker container to remove the need to install dependencies, improving the

usability of the framework. Using the Docker Compose Tool, docker-compose2, the loader

is started alongside the DBMS instance in a container with its dependencies and starts

loading automatically once the database has started.

3.6 SQL Server Reference Implementation

For LDBC SNB Interactive v2.0, SQL Server is added as an additional reference imple-

mentation. This implementation makes use of Transact-SQL (T-SQL) including the SQL

Graph capabilities (see Section 2.4.5). As a basis, the queries from the Postgres imple-

mentation, adopting the SQL:1999 queries written in PostgreSQL dialect to T-SQL. The

creation of this new reference implementation required writing several components from

scratch:

• Batch data loader: the loader for SQL Server requires to specify for each table a

format file to support the correct loading of the datetime values and Unicode (see

Section 2.6).

• SQL Graph requires a changed schema and bulk loader to define the table where the

node and edge information are stored.

• To mitigate errors when installing the dependencies of the SQL Server driver3 for the

loader, the loader is containerized to isolate the dependencies using docker-compose.
1Umbra’s queries, loader and schema implementation were upgraded by Gabor Szarnyas (CWI) and

Altan Birler (TUM).
2https://docs.docker.com/compose/
3https://learn.microsoft.com/en-us/sql/connect/odbc/linux-mac/installing-the-

microsoft-odbc-driver-for-sql-server

49

https://docs.docker.com/compose/
https://learn.microsoft.com/en-us/sql/connect/odbc/linux-mac/installing-the-microsoft-odbc-driver-for-sql-server
https://learn.microsoft.com/en-us/sql/connect/odbc/linux-mac/installing-the-microsoft-odbc-driver-for-sql-server

3. DESIGN & IMPLEMENTATION

• For Query 14, a single-source BFS algorithm is written in T-SQL and saved as a

stored procedure. The weights are precomputed and maintained during inserts and

deletes.

Of the rewritten queries, complex queries 2, 12 and 13, and short queries 2, 3 and

6 leverage SQL Graph capabilities using the MATCH and SHORTEST_PATH functions. The

SHORTEST_PATH function finds unweighted shortest paths between the specified nodes. Ad-

ditionally, when inserting an edge, SQL Graph requires additional syntax to retrieve the

node information, summarized in the NODE_ID1 property, to form an edge.

To implement cascading deletes with SQL Server using the SQL Graph syntax, we make

use of triggers: this is due to a limitation in SQL Server that a table with self-referencing

foreign keys, e.g., the table with posts and comments, creates multiple cascade paths once

a delete is executed2.

1https://learn.microsoft.com/en-us/sql/t-sql/functions/node-id-from-parts-transact-sql
2https://learn.microsoft.com/en-US/sql/relational-databases/errors-events/mssqlserver-

1785-database-engine-error?view=sql-server-ver16

50

https://learn.microsoft.com/en-us/sql/t-sql/functions/node-id-from-parts-transact-sql
https://learn.microsoft.com/en-US/sql/relational-databases/errors-events/mssqlserver-1785-database-engine-error?view=sql-server-ver16
https://learn.microsoft.com/en-US/sql/relational-databases/errors-events/mssqlserver-1785-database-engine-error?view=sql-server-ver16

4

Evaluation of Interactive v2.0

4.1 Experimental Setup

We executed several experiments to evaluate the parameter generator and curation (ex-

plained in Section 3.3), as well as evaluating the runtimes of delete queries. For these

experiments, we used the following setup:

• Azure Compute Standard_E16d_v5, 16 vCPU, Intel(R) Xeon(R) 8370 @ 2.80 GHz

• 128 GB RAM, 600 GB SSD

• Operating system: Ubuntu 22.04 LTS (kernel version: 5.15.0-1022-azure)

• Java version: 11.0.17+8-post-Ubuntu-1ubuntu222.04

• Docker version: 20.10.21

• File system: ext4

• Python version: 3.10

• DuckDB version (used in Paramgen): 0.5.1

For benchmarks to compare the total runtimes of the complex reads between Interactive

v1.0 and v2.0, we used:

• Azure Compute Standard_L16s_v3, 16 vCPU, Intel(R) Xeon(R) 8370 @ 2.80 GHz

• 128 GB RAM, 3.4 TB NVMe SSD (2×1.7 TB in RAID0)

• Operating system: Ubuntu 22.04 LTS (kernel version: 5.15.0-1022-azure)

• Java version: 11.0.17+8-post-Ubuntu-1ubuntu222.04

• Docker version: 20.10.21

• File system: ext4

• Python version: 3.10

51

4. EVALUATION OF INTERACTIVE V2.0

20
12

-09
-15

20
12

-10
-01

20
12

-10
-15

20
12

-11
-01

20
12

-11
-15

20
12

-12
-01

20
12

-12
-15

20
13

-01
-01

Time (Simulation date)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

To
ta

l o
pe

ra
tio

ns
 (m

illi
on

)

Number of updates per 12 Hours for SF30 from Hadoop Datagen
Inserts

20
12

-11
-29

20
12

-12
-01

20
12

-12
-05

20
12

-12
-09

20
12

-12
-13

20
12

-12
-17

20
12

-12
-21

20
12

-12
-25

20
12

-12
-29

20
13

-01
-01

Time (Simulation date)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

To
ta

l o
pe

ra
tio

ns
 (m

illi
on

)

Number of updates per 12 Hours for SF30 from Spark Datagen
Inserts
Deletes

Figure 4.1: Number of events per 12 hours for Hadoop and Spark during the simulation time
of the benchmark.

52

4.2 Experiments for Tuning SNB Interactive v2

To compare the runtimes of the parameter generation scripts between Interactive v1.0

and v2.0, we used:

• Intel(R) Xeon(R) E5-4657L v2 @ 2.40 GHz, 48 cores with Hyper-Threading

• 1 TiB RAM, HDD

• Operating System: Fedora 36 (kernel version: 5.18.18-200.fc36.x86_64)

• Python version: 3.10

• DuckDB version: 0.5.1

To reproduce the test environments in Azure, scripts are used to provision and configure

each virtual machine. For provisioning of the used infrastructure, Terraform1 is used and

for configuration of the VM, Ansible2 is used. These scripts are provided in a public

repository3.

Database systems The experiments to compare the runtimes with v1.0 and v2.0 were

executed against Neo4j Enterprise Edition 4.4.14 and Umbra 45f3aae27, both running in a

Docker container. Additionally, we use an RDBMS, anonymously referred to as DBMS X to

demonstrate the benchmark’s portability and gain an insight into the expected performance

of RDBMSs.

4.2 Experiments for Tuning SNB Interactive v2

4.2.1 Characterization of the Hadoop and Spark Datagen’s Data Sets

The migration to the Spark data set (Section 2.6.1) introduces the delete events in the

Interactive workload. We observed multiple differences between the Hadoop and Spark

data sets affecting the Interactive workload, in addition to the differences explained in Sec-

tion 2.6.1. The number of updates for a given time differs: Figure 4.1 shows the number of

updates per 12 hours of simulation time for scale factor 30. The Hadoop Datagen has on

average more updates and exhibits spiking events, while the Spark Datagen mostly shows a

linear increase without spiking events until the last 72 hours where the number of updates

shows an exponential increase. This is not a desirable distribution since if a SUT with a

high TCR−1 is fast enough to reach the last 12 hours, it can slow down due to the amount

of update queries in the last period. In addition, the total number of updates is lower in
1https://www.terraform.io
2https://www.ansible.com
3https://github.com/GLaDAP/cloud-bootstrap
4https://hub.docker.com/_/neo4j

53

https://www.terraform.io
https://www.ansible.com
https://github.com/GLaDAP/cloud-bootstrap
https://hub.docker.com/_/neo4j

4. EVALUATION OF INTERACTIVE V2.0

20
12

-09
-15

20
12

-10
-01

20
12

-10
-15

20
12

-11
-01

20
12

-11
-15

20
12

-12
-01

20
12

-12
-15

20
13

-01
-01

Time (Simulation date)

0

20

40

60

80

100

To
ta

l o
pe

ra
tio

ns
 (m

illi
on

)

Number of updates per 12 Hours for SF30 from Hadoop Datagen
Inserts

20
12

-11
-29

20
12

-12
-01

20
12

-12
-05

20
12

-12
-09

20
12

-12
-13

20
12

-12
-17

20
12

-12
-21

20
12

-12
-25

20
12

-12
-29

20
13

-01
-01

Time (Simulation date)

0

5

10

15

20

To
ta

l o
pe

ra
tio

ns
 (m

illi
on

)

Number of updates per 12 Hours for SF30 from Spark Datagen
Inserts
Deletes

Figure 4.2: Cumulative sum of the number of events per 12 hours for Hadoop and Spark
during the simulation time of the benchmark.

54

4.2 Experiments for Tuning SNB Interactive v2

the data set generated by Spark compared to the Hadoop one.

Figure 4.2 shows the number of updates executed per 12 simulation hours. The timespan

of the data set produced by Spark also affects the upper bound of the TCR−1 value. For a

valid benchmark run, the warmup and measurement window (see Section 2.6.5.3) should

be a minimum of 2.5 hours in total. Spark Datagen leaves 3% of the simulation time for

the update streams, resulting in 3 × 365 × 0.03 × 24 = 788.4 hours for the update streams,

resulting in a lower bound TCR−1 of 2.5
788.4 = 0.0034. This is higher than the lower bound

TCR−1 when using the data set from Hadoop, 0.001 (1, Section 7.4.7.2).

4.2.2 Parameter Curation

100 101 102 103 104

Scale Factor

101

102

103

104

Ti
m

e
(in

 se
co

nd
s)

19

64

257

933

3826

14567

62228

9
14 19

33
74

255
616

1528

4841

Execution time parameter generation for SF1 to SF10K
v1.0
v2.0

Figure 4.3: Runtime of the parameter generators for Interactive v1.0 and v2.0. The labels
show the runtime in seconds.

Scaling Parameter Generation

To improve the scalability of the parameter generator, we wrote a new parameter generator

to support larger scale factors with support for temporal parameters. Figure 4.3 shows the

runtimes of the parameter generators for Interactive v1.0 and v2.0. As can be seen, the

new parameter generator scales well for larger scale factors. The new parameter generator

is more than two orders of magnitude faster on SF1,000 and is able to scale to SF10,000

while only using a maximum of 80 GB of memory.

55

4. EVALUATION OF INTERACTIVE V2.0

v1.0 v2.0
Threads 1 read and 2 write threads 1
Instance Azure Compute Standard_L16s_v3
Warmup 30,000
Operation count 120,000

Table 4.1: Benchmark environment used in parameter curation comparison

Comparison of Parameter Generation v1.0 and v2.0

When comparing the runtimes and curated parameters from Interactive v1.0 with Interac-

tive v2.0, we used the configuration shown in Table 4.1. We evaluated queries 1 to 12 on

SF30 for Neo4j and Umbra.

Figure 4.4 and Table 4.2 show the runtime distribution and statistics using Neo4j. When

looking at the standard deviation of the runtimes of the queries when using Neo4j, we ob-

serve that the parameter generation in Interactive v2.0 is only better performing for queries

1, 5, 8 and 9 compared to v1.0. Figure 4.5 and Table 4.2 show the results using Umbra.

When executed with Umbra, queries 1–5 and 10 exhibit a lower standard deviation using

the parameters generated by Interactive v2.0 compared to v1.0. The runtimes for queries

7 and 8 are significantly higher in v2.0 compared to v1.0. This is because, in v2.0, the

selected Person IDs have more friendship connections, therefore a higher chance of interac-

tions in the Post subgraph. The factor tables in the Spark Datagen contain the statistics

for the entire simulation time, and therefore do not take temporal changes into account.

This leads to inaccuracies in the estimated intermediate cardinalities, affecting parameter

curation. We provide an example of this in Section 4.2.3.

For the newly introduced variants for Query 3, correlated and anti-correlated countries,

the percentile selected for country pairs does not affect the runtimes: correlated and anti-

correlated countries show similar runtime behavior. This could indicate that the two cases

do not exhibit a significant difference and/or the DBMSs used in this experiment picked

the correct query plans for these queries.

4.2.3 Path Curation

For path curation, we loaded the person and friendship graph into networkit (57) and

batch load the person and friendship updates per day (see Section 3.3.3). The parameter

curation relies on the number of 1-, 2- and 3-hop friends for a given person. Unfortunately,

56

4.2 Experiments for Tuning SNB Interactive v2

v1 v2
0

1000

2000

3000

Ru
nt

im
e

in
 m

illi
se

co
nd

s

Runtime of LdbcQuery1

v1 v2
0

250

500

750

1000
Ru

nt
im

e
in

 m
illi

se
co

nd
s

Runtime of LdbcQuery2

v1 v2a v2b
0

10000

20000

30000

40000

Ru
nt

im
e

in
 m

illi
se

co
nd

s

Runtime of LdbcQuery3

v1 v2
0

200

400

600

800

Ru
nt

im
e

in
 m

illi
se

co
nd

s

Runtime of LdbcQuery4

v1 v2
0

10000

20000

30000

Ru
nt

im
e

in
 m

illi
se

co
nd

s

Runtime of LdbcQuery5

v1 v2
0

5000

10000

15000

20000

25000

Ru
nt

im
e

in
 m

illi
se

co
nd

s

Runtime of LdbcQuery6

v1 v2
0

10

20

30

40

50

Ru
nt

im
e

in
 m

illi
se

co
nd

s

Runtime of LdbcQuery7

v1 v2
0

25

50

75

100

125

Ru
nt

im
e

in
 m

illi
se

co
nd

s

Runtime of LdbcQuery8

v1 v2
0

10000

20000

30000

40000

Ru
nt

im
e

in
 m

illi
se

co
nd

s

Runtime of LdbcQuery9

v1 v2
0

2000

4000

6000

8000

10000

Ru
nt

im
e

in
 m

illi
se

co
nd

s

Runtime of LdbcQuery10

v1 v2
0

100

200

300

Ru
nt

im
e

in
 m

illi
se

co
nd

s

Runtime of LdbcQuery11

v1 v2
0

1000

2000

3000

4000

Ru
nt

im
e

in
 m

illi
se

co
nd

s

Runtime of LdbcQuery12

Figure 4.4: Parameter Curation: Curated v1.0 vs. curated v2.0 using Neo4j with SF30. For
query3, v2a and v2b denote the variants of the query.

57

4. EVALUATION OF INTERACTIVE V2.0

v1 v2

25

50

75

100

125

Ru
nt

im
e

in
 m

illi
se

co
nd

s

Runtime of LdbcQuery1

v1 v2
20

30

40

50

60
Ru

nt
im

e
in

 m
illi

se
co

nd
s

Runtime of LdbcQuery2

v1 v2a v2b
47.5

50.0

52.5

55.0

57.5

Ru
nt

im
e

in
 m

illi
se

co
nd

s

Runtime of LdbcQuery3

v1 v2
40

60

80

100

120

Ru
nt

im
e

in
 m

illi
se

co
nd

s

Runtime of LdbcQuery4

v1 v2

50

100

150

Ru
nt

im
e

in
 m

illi
se

co
nd

s

Runtime of LdbcQuery5

v1 v2
40

60

80

100

120

Ru
nt

im
e

in
 m

illi
se

co
nd

s

Runtime of LdbcQuery6

v1 v2
0

200

400

600

800

Ru
nt

im
e

in
 m

illi
se

co
nd

s

Runtime of LdbcQuery7

v1 v2
0

500

1000

1500

2000

2500

Ru
nt

im
e

in
 m

illi
se

co
nd

s

Runtime of LdbcQuery8

v1 v2
40

60

80

100

120

Ru
nt

im
e

in
 m

illi
se

co
nd

s

Runtime of LdbcQuery9

v1 v2

200

400

600

800

Ru
nt

im
e

in
 m

illi
se

co
nd

s

Runtime of LdbcQuery10

v1 v2

10

15

20

Ru
nt

im
e

in
 m

illi
se

co
nd

s

Runtime of LdbcQuery11

v1 v2

100

200

300

400

500

Ru
nt

im
e

in
 m

illi
se

co
nd

s

Runtime of LdbcQuery12

Figure 4.5: Parameter Curation: Curated v1.0 vs. curated v2.0 using Umbra 45f3aae27
with SF30. For query3, v2a and v2b denote the variants of the query.

58

4.2 Experiments for Tuning SNB Interactive v2

Version Query Neo4j
standard
deviation

Neo4j
mean

runtime

Umbra
standard
deviation

Umbra
mean

runtime
v1 LdbcQuery1 640.17 2,006.48 23.30 106.63
v2 LdbcQuery1 17.86 80.16 2.03 44.11
v1 LdbcQuery2 29.94 153.43 6.95 47.30
v2 LdbcQuery2 134.20 921.21 3.79 30.22
v1 LdbcQuery3 3,735.94 26,001.75 1.62 52.74
v2a LdbcQuery3a 4,482.94 35,454.43 1.67 51.39
v2b LdbcQuery3b 4,094.59 37,043.01 1.55 51.18
v1 LdbcQuery4 17.55 135.57 4.63 50.04
v2 LdbcQuery4 97.88 724.82 3.69 125.21
v1 LdbcQuery5 5,480.80 21,240.52 35.97 109.85
v2 LdbcQuery5 2,633.08 6,648.29 18.39 125.21
v1 LdbcQuery6 1,935.23 10,649.56 1.05 48.52
v2 LdbcQuery6 2,388.11 21,276.04 1.37 116.12
v1 LdbcQuery7 0.61 0.31 3.11 3.50
v2 LdbcQuery7 5.88 26.80 6.65 718.36
v1 LdbcQuery8 17.42 35.12 3.29 7.49
v2 LdbcQuery8 4.42 18.72 7.67 2,304.18
v1 LdbcQuery9 4,465.42 21,596.71 15.46 104.91
v2 LdbcQuery9 4,300.84 36,095.18 15.50 71.95
v1 LdbcQuery10 279.87 1,594.01 62.65 211.87
v2 LdbcQuery10 1,092.73 7,695.16 51.22 213.98
v1 LdbcQuery11 14.21 56.58 0.52 8.31
v2 LdbcQuery11 40.56 180.05 0.84 14.25
v1 LdbcQuery12 80.30 508.63 1.78 58.35
v2 LdbcQuery12 361.59 2,650.06 64.81 189.69

Table 4.2: Comparison of variance, standard deviation and mean of runtimes in milliseconds
using Neo4j and Umbra on SF30.

Occurrences in time Number
One occurrence 142,696
Two occurrences 3,578
Three occurrences 88

Table 4.3: Total number of paths with discontinuous time intervals for SF10.

the factor generator produces overapproximated results for these values. Figure 4.6 shows

the effect of the changes in the friendships for the number of friends of friends for a given

person in SF10. The person’s number of friends of friends defined in the factor table is

never reached during the simulation time of the social network, with the accuracy varying

between 62% and 86%. This inaccuracy in the factor table affects the parameter curation

for the queries that use the factor table with the 1-, 2- and 3-hop friends. We also see the

effect of deletes, where at 2012-12-27, a friendship is deleted, reducing the total of friend

of friends.

Besides the number of friends of friends, updates in the graph also affect the 4-hop

paths. Table 4.3 shows the number of 4-hop paths found in the Spark SF10 data set with

59

4. EVALUATION OF INTERACTIVE V2.0

discontinuous time intervals. Without information about when a path is 4 hops long, the

same parameter will give different runtimes since the path has a different hop count, often

smaller than 4 hops.
20

12
-1

1-
29

20
12

-1
2-

01

20
12

-1
2-

05

20
12

-1
2-

09

20
12

-1
2-

13

20
12

-1
2-

17

20
12

-1
2-

21

20
12

-1
2-

25

20
12

-1
2-

29

20
13

-0
1-

01

Time (Simulation date)

0

20

40

60

80

Ac
cu

ra
cy

 o
f

 n
um

be
r o

f f
rie

nd
s o

f f
rie

nd
s (

%
)

Accuracy of number of friends of friends in time
for PersonId=19791209366837 using SF10

Figure 4.6: Example of number of friends of friends for a given person ID in the SF10 data
set. The accuracy of the number of friends of friends varies for one person per day during the
simulation timeframe between 62% and 86%.

Path Queries

Interactive v2.0 introduces variants to the path queries and a new definition for Query 14

to find the cheapest path between two persons. The query template of Query 13, finding

an unweighted shortest path between two nodes, is unchanged. In Interactive v2.0, both

queries have two variants that differ in their input parameters: one variant guarantees the

absence of a path, and the other guarantees the existence of a path. Figure 4.7 shows

the runtimes of Query 13 and Query 14 using v1.0 and v2.0. For Query 13, the runtimes

are comparable to v1.0. When a path is guaranteed, we see on average longer runtimes

compared to the no-path variant.

For Query 14, we observe similar runtimes for the variants. This is due to Neo4j’s

limitation of using a unidirectional Dijkstra path-finding algorithm in their Graph Data

Science (GDS) library.1 However, while Query 14’s specifications are different between
1https://neo4j.com/docs/graph-data-science/current/algorithms/dijkstra-source-target/

60

https://neo4j.com/docs/graph-data-science/current/algorithms/dijkstra-source-target/

4.3 Effect of Deletes

v1.0 and v2.0, Query 14 for v2.0 has significantly higher runtimes compared to v1.0. In

v1.0, Query 14 requires all shortest paths between two persons and then calculates the

weights of each path, while in v2.0 the query requires the cheapest path.

v1 v2a v2b
0

5

10

15

20

25

30

Ru
nt

im
e

in
 m

illi
se

co
nd

s

Runtime of LdbcQuery13

v1 v2a v2b
0

50000

100000

150000

200000

250000

Ru
nt

im
e

in
 m

illi
se

co
nd

s

Runtime of LdbcQuery14

Figure 4.7: Path queries: Runtimes for path queries with interactive v1.0 and interactive
v2.0 using Neo4j. Note that Q14 is changed between v1.0 and v2.0, with v2.0 performing the
computationally much more difficult cheapest path problem.

4.3 Effect of Deletes

To measure the effect of deletes, we used Neo4j Enterprise Edition 4.4.1 using 1 thread

with only the insert and delete queries enabled. Each run consists of 1,000,000 update

operations to execute a sufficient number of delete operations from the update streams to

allow studying their effect.

Figure 4.8 shows the runtimes of the delete queries for scale factors 10, 30, 100, and 100,

while Table 4.4 shows statistics for each delete query, including the number of times the

query is executed. On average, removing a like to a post/comment or a forum membership,

takes the same amount of time for all scale factors, indicating that the delete performance

of Neo4j scales well when increasing the size of the graph. This is likely due to the storage

design in Neo4j where a linked list of pointers is used to refer to the nodes and edges (8).

However, for deleting a forum, subthread or a person from the network, the average and

maximum runtimes increase, but not significantly. When the scale factor increases, the

runtime for deleting a person increases the most since removing a person also removes all

their edges, comments and forums, causing multiple implicit delete operations after explic-

itly deleting a person.

61

4. EVALUATION OF INTERACTIVE V2.0

SF10 SF30 SF100 SF300
0

500

1000

1500

2000

2500

3000

3500

4000

Ru
nt

im
e

in
 m

illi
se

co
nd

s

RemovePerson

SF10 SF30 SF100 SF300
0

10

20

30

40

50

60

Ru
nt

im
e

in
 m

illi
se

co
nd

s

RemovePostLike

SF10 SF30 SF100 SF300
0

20

40

60

80

100

120

140

160

Ru
nt

im
e

in
 m

illi
se

co
nd

s

RemoveCommentLike

SF10 SF30 SF100 SF300
0

20

40

60

80

100

120

140

160

Ru
nt

im
e

in
 m

illi
se

co
nd

s

RemoveForum

SF10 SF30 SF100 SF300
0

10

20

30

40

50

Ru
nt

im
e

in
 m

illi
se

co
nd

s

RemoveForumMembership

SF10 SF30 SF100 SF300
0

10

20

30

40

50

60

70

Ru
nt

im
e

in
 m

illi
se

co
nd

s

RemovePostThread

SF10 SF30 SF100 SF300
0

25

50

75

100

125

150

175
Ru

nt
im

e
in

 m
illi

se
co

nd
s

RemoveCommentSubthread

SF10 SF30 SF100 SF300
0

10

20

30

40

50

60

70

Ru
nt

im
e

in
 m

illi
se

co
nd

s

RemoveFriendship

Figure 4.8: Effect of deletes: Runtimes of delete queries using Neo4j 4.4.1 for scale factors
SF10, 30, 100 and 300

SF10 SF30

2

4

6

8

10

Ru
nt

im
e

in
 m

illi
se

co
nd

s

RemovePerson

SF10 SF30
0

25

50

75

100

125

150

175

Ru
nt

im
e

in
 m

illi
se

co
nd

s

RemovePostLike

SF10 SF30
0

200

400

600

800

Ru
nt

im
e

in
 m

illi
se

co
nd

s

RemoveCommentLike

SF10 SF30
0

10

20

30

40

50

60

70

Ru
nt

im
e

in
 m

illi
se

co
nd

s

RemoveForum

SF10 SF30
0

500

1000

1500

2000

2500

3000

Ru
nt

im
e

in
 m

illi
se

co
nd

s

RemoveForumMembership

SF10 SF30
0

50

100

150

200

Ru
nt

im
e

in
 m

illi
se

co
nd

s

RemovePostThread

SF10 SF30
0

100

200

300

400

500

600

Ru
nt

im
e

in
 m

illi
se

co
nd

s

RemoveCommentSubthread

SF10 SF30
0

50

100

150

200

250

300

350

Ru
nt

im
e

in
 m

illi
se

co
nd

s

RemoveFriendship

Figure 4.9: Effect of deletes: Runtimes of delete queries using Umbra for scale factors SF10
and SF30.

62

4.3 Effect of Deletes

Query SF Count Min Max Mean P5 P95

LdbcDelete1RemovePerson

10 29 8.00 347.00 54.79 9.00 209.20
30 19 10.00 310.00 82.63 11.80 276.70

100 21 12.00 397.00 111.62 19.00 361.00
300 19 13.00 3,858.00 267.68 22.90 537.00

LdbcDelete2RemovePostLike

10 2430 2.00 39.00 2.93 2.00 3.00
30 2495 2.00 61.00 3.02 2.00 3.00

100 2541 2.00 37.00 3.12 3.00 4.00
300 2824 2.00 38.00 3.26 3.00 4.00

LdbcDelete3RemoveCommentLike

10 14660 2.00 162.00 2.64 2.00 3.00
30 15256 2.00 40.00 2.70 2.00 3.00

100 14538 2.00 63.00 3.11 3.00 4.00
300 16696 2.00 79.00 3.30 3.00 4.00

LdbcDelete4RemoveForum

10 136 4.00 93.00 6.10 4.00 8.00
30 138 4.00 101.00 7.27 4.00 10.45

100 109 5.00 112.00 10.94 6.00 17.60
300 110 7.00 161.00 14.79 9.00 30.10

LdbcDelete5RemoveForumMembership

10 859 3.00 26.00 3.06 3.00 3.00
30 669 2.00 41.00 3.14 3.00 4.00

100 569 3.00 53.00 3.32 3.00 4.00
300 543 3.00 28.00 3.78 3.00 5.00

LdbcDelete6RemovePostThread

10 2130 2.00 70.00 2.56 2.00 3.00
30 1710 2.00 39.00 2.50 2.00 3.00

100 1627 2.00 42.00 2.62 2.00 3.00
300 1523 2.00 28.00 2.64 2.00 3.00

LdbcDelete7RemoveCommentSubthread

10 12967 2.00 50.00 2.54 2.00 3.00
30 12200 2.00 165.00 2.55 2.00 3.00

100 12133 2.00 176.00 2.66 2.00 3.00
300 11837 2.00 190.00 2.66 2.00 3.00

LdbcDelete8RemoveFriendship

10 4812 3.00 47.00 3.09 3.00 3.00
30 4900 2.00 67.00 3.08 3.00 3.00

100 5097 3.00 40.00 3.15 3.00 4.00
300 5153 3.00 73.00 4.97 3.00 10.00

Table 4.4: Runtimes for deletes using Neo4j v4.4.1 for SF10, 30, 100 and 300.

Query SF Count Min Max Mean P5 P95

LdbcDelete1RemovePerson 10 29 1.00 3.00 1.24 1.00 2.00
30 19 1.00 10.00 1.79 1.00 3.70

LdbcDelete2RemovePostLike 10 2430 4.00 8.00 4.17 4.00 5.00
30 2495 10.00 173.00 10.48 10.00 11.00

LdbcDelete3RemoveCommentLike 10 14660 3.00 198.00 3.11 3.00 4.00
30 15256 9.00 823.00 9.29 9.00 10.00

LdbcDelete4RemoveForum 10 136 1.00 33.00 1.49 1.00 2.00
30 138 1.00 70.00 2.28 1.00 2.00

LdbcDelete5RemoveForumMembership 10 859 5.00 1,019.00 6.61 5.00 6.00
30 669 12.00 3,143.00 17.90 12.00 14.00

LdbcDelete6RemovePostThread 10 2130 5.00 216.00 5.53 5.00 7.00
30 1710 15.00 53.00 16.23 15.00 18.00

LdbcDelete7RemoveCommentSubthread 10 12967 5.00 19.00 5.49 5.00 7.00
30 12200 15.00 641.00 16.34 15.00 18.00

LdbcDelete8RemoveFriendship 10 4812 5.00 128.00 6.38 6.00 7.00
30 4900 12.00 372.00 13.11 12.00 14.00

Table 4.5: Runtimes for deletes using Umbra for SF10 and 30.

63

4. EVALUATION OF INTERACTIVE V2.0

Neo4j Umbra DBMS X
0

10000

20000

30000

40000

Ru
nt

im
e

in
 m

illi
se

co
nd

s

RemovePerson

Neo4j Umbra DBMS X
0

5

10

15

20

25

30

35

40

Ru
nt

im
e

in
 m

illi
se

co
nd

s

RemovePostLike

Neo4j Umbra DBMS X
0

25

50

75

100

125

150

175

200

Ru
nt

im
e

in
 m

illi
se

co
nd

s

RemoveCommentLike

Neo4j Umbra DBMS X
0

2000

4000

6000

8000

Ru
nt

im
e

in
 m

illi
se

co
nd

s

RemoveForum

Neo4j Umbra DBMS X
0

200

400

600

800

1000

Ru
nt

im
e

in
 m

illi
se

co
nd

s

RemoveForumMembership

Neo4j Umbra DBMS X
0

2500

5000

7500

10000

12500

15000

17500

Ru
nt

im
e

in
 m

illi
se

co
nd

s

RemovePostThread

Neo4j Umbra DBMS X
0

2000

4000

6000

8000

10000

12000

14000

16000

Ru
nt

im
e

in
 m

illi
se

co
nd

s

RemoveCommentSubthread

Neo4j Umbra DBMS X
0

20

40

60

80

100

120

Ru
nt

im
e

in
 m

illi
se

co
nd

s

RemoveFriendship

Figure 4.10: Effect of deletes: Runtime comparison of delete queries for Neo4j v4.4.1, Umbra
and DBMS X using SF10 and 750,000 update operations.

Figure 4.9 shows the runtimes of the delete queries for Umbra on SF10 and SF30 and

Table 4.5 show the statistics. We were unable to obtain results for SF100 and larger since

Umbra failed due to memory exhaustion. The results show that the mean runtimes of the

deletes increase when increasing the scale factor. Figure 4.10 shows the runtimes for delete

queries for Neo4j, Umbra and DBMS X using SF10. The runtime for deleting a node, with

cascading deletes, takes significantly more time with DBMS X than with Neo4j. Deletion

of edges on the other hand is faster using DBMS X.

With Interactive v2.0, the delete operations can result in a deadlock on the SUT when

the TCR−1 is set too high and the benchmark is running multithreaded. This results in

the system becoming unable to keep up with the delete operations. For example, DBMS X

runs into a deadlock and aborts one of the deadlocked transactions, which in turn results

in the benchmark being aborted. This is because the transactions with delete operations,

especially when there are multiple cascading delete operations, will lock resources to which

the DBMS ultimately decides to rollback one of the deadlocked transactions.

64

5

Related Work on Database
Benchmarks

This section provides information about other benchmarks that target systems capable of

running graph workloads, benchmarks targetting OLTP DBMSs, and information about

current work on distributed benchmark frameworks.

5.1 LDBC SNB Business Intelligence (BI)

The LDBC SNB BI workload tests DBMSs capable of OLAP workloads on a graph analyt-

ics workload, using the data generated by the LDBC SNB Spark Datagen. (60) The queries

contain complex aggregations and joins that touch large parts of the data. In contrast with

SNB Interactive, BI explores large portions of the social network graph to search for oc-

currences of graph patterns, causing large intermediate result sets which are challenging

to systems that do not prune the search space efficiently.(61) The benchmark contains 20

complex read queries, 8 insert queries, which are the same as the ones in SNB-I, and 8

delete queries. (1) It uses parameter curation and defines variants for 8 queries, leading to

a total of 28 query variants. SNB-BI defines two performance metrics: throughput and

power.

5.2 LDBC Graphalytics

LDBC Graphalytics (31) is a benchmark for graph analysis platforms. Graphalytics con-

tains six deterministic algorithms: Breadth-first search (BFS), PageRank (PR), Weakly

connected components (WCC), Community detection using label propagation (CDLP), lo-

cal clustering coefficient (LCC), and single-source shortest path (SSSP). It uses the LDBC

65

5. RELATED WORK ON DATABASE BENCHMARKS

SNB Datagen and Graph500 data generator as input data. While Graphalytics also uses

the SNB Datagen, it uses scale factors with different clustering coefficients, e.g., SF100

with clustering coefficients 0.05 and 0.15. The difference between Graphalytics and SNB is

that SNB mainly targets DBMSs capable of running graph workloads. In contrast, Graph-

alytics targets platforms running analysis algorithms that may not be easily modeled as

database queries, for example extracting global metrics from the graph. Another difference

is that SNB-I provides the driver to the user and the user only needs to implement a client

using an interface.

5.3 LSQB: Large-Scale Subgraph Query Benchmark

LSQB (38), Large-scale Subgraph Query Benchmark, focuses on DBMS join performance

by using subgraph matching, equivalent to multi-way joins between vertices and edges

tables on ID attributes. The benchmark uses the LDBC SNB data generator as the data

set. Its workload consists of 9 read-heavy global queries and lacks update operations.

Six queries match basic graph patterns (equivalent to joins on edge tables) and three

look at complex graph patterns (necessitating anti-join and outer join operations) (3).

The key differences between LSQB and LDBC SNB-I are that SNB-I uses seeded queries

(e.g., starting a query on a person node specified by a query parameter), includes update

operations and covers path queries in its workload.

5.4 LinkBench

LinkBench (5) is a synthetic benchmark created by Facebook based on the production

database traces of their systems. The benchmark aims to simulate real-world database

workloads for social applications. The queries used are point reads by primary key, create,

delete and update operations, selection of ranges by ID, type, and timestamp, and aggre-

gation queries like counting the number of friends. In addition, LinkBench only defines

one type of node, simplifying the benchmark and creating edges during bulk load, not

considering underlying correlations usually found in social networks since the queries do

not directly assess performance with such structures.

5.5 GDB-test

Lissandri et al. (35) introduce a microbenchmark targeting graph databases. It is derived

from the LDBC SNB Interactive workload by decomposing the complex read queries and

66

5.6 TPC (Transaction Processing Performance Council)

look at the basic operators. The operators are evaluated using 35 queries, in the categories

load, create, read, update, delete and traversals. The data set that is used in the bench-

mark is, besides the LDBC SNB, real data from different domains, e.g., Yeast, a protein

interaction network. The evaluation metric of the benchmark is the disk space used, the

data loading and query execution times. A limitation of this microbenchmark is the small

scale of the graphs.

5.6 TPC (Transaction Processing Performance Council)

5.6.1 TPC-C

TPC-C is an OLTP benchmark to compare database platforms running medium complex-

ity transaction processing workload (64), having five concurrent transaction types: selects,

updates, inserts, deletes, joins and non-unique selects. It simulates the activity of a whole-

sale supplier, handling new orders, payments, order status, delivery and stock levels. (64).

A feature of TPC-C compared to previous TPC benchmarks is that it contains skew in the

access patterns for certain relations in the data. In addition, the benchmark workload can

be partitioned across multiple nodes executing the benchmark (34).

5.6.2 TPC-H

TPC-H (66) is a decision support benchmark consisting of ad-hoc queries and concurrent

updates. The ad-hoc querying workload simulates users sending individual queries that

are not known to the database in advance, such that the database administrator cannot

optimize the database systems. The benchmark has 22 read-only queries and two refresh

functions, inserting and removing rows from tables (45).

5.6.3 TPC-DS

TPC-DS (65) is a decision support benchmark that targets OLAP DBMSs. In contrast to

TPC-H, TPC-DS includes 99 queries covering the whole simulation data set, by having ad-

hoc, reporting, data mining and iterative OLAP queries (46). It also addresses deficiencies

found in TPC-H. The synthetically generated data used in TPC-H scaled linearly leading

to unrealistic scenarios where the data is unskewed, imposing little challenge on statistic

collection and optimal plan generation (39). Furthermore, the third normal form schema

does not sufficiently stress the differences in indexing techniques and query optimizers (39),

67

5. RELATED WORK ON DATABASE BENCHMARKS

which is changed with TPC-DS using a snowflake schema. Lastly, the refresh operations

were not testing the capabilities of a DBMS under realistic data maintenance operations.

5.7 YCSB

The Yahoo Cloud Serving Benchmark (YCSB) (14) targets OLTP DBMSs in the cloud,

providing 5 workloads with different percentages of operations, ranging from 50% reads

and 50% updates for the update heavy workload to 95–100% read operations. It primarily

targets serving In addition, a workload including mostly scan operations is included. YCSB

comes with a Java client that generates the data and executes the workload. The client

can also be extended to support other DBMSs and workloads.

68

Part II

Distributed Driver Design

69

6

Tools for Distributed Benchmarking

To design a distributed driver, we look for tools and frameworks to support and simplify the

implementation of the driver. Specifically, we investigate tools that enable the deployment

of a distributed driver that is relatively easy to set up as well as maintainable: changing

part of the driver should not lead to a significant effort. Additionally, we select tools

and libraries that enable simplifying the implementation of the driver clients to reduce

complexity. As a starting point for the selection, we use the Cloud Native Compute

Foundation to investigate existing frameworks and tools.

6.1 Cloud Native Compute Foundation

The Cloud Native Compute Foundation (CNCF) (12), part of the Linux Foundation, is

an organization that encourages the adoption of cloud native technologies by providing

resources to projects to support adoption as well as a technology landscape1, providing

an overview of available technologies. Examples of areas where projects are supported are

containerization, programmable infrastructure, CI/CD, storage and logging. CNCF defines

cloud native technologies to enable loosely coupled systems that are resilient, manageable

and observable.2

6.2 Distributed Frameworks

Several frameworks are available for distributed applications, such as Kubernetes and

Akka.io.
1https://landscape.cncf.io
2https://github.com/cncf/toc/blob/main/DEFINITION.md

71

https://landscape.cncf.io
https://github.com/cncf/toc/blob/main/DEFINITION.md

6. TOOLS FOR DISTRIBUTED BENCHMARKING

6.2.1 Kubernetes

Originally developed at Google under the name Borg (68), Kubernetes is an open-source

system for automating deployment, scaling, and managing containerized applications. It

runs on most platforms and has multiple distributions which target small local instances

(minikube, k3s, Docker Kubernetes, kubeedge). This enables Kubernetes to run from

lightweight edge/Internet-of-Things hardware to large-scale hosted solutions on major pub-

lic clouds like Azure AKS (Azure Kubernetes Service), AWS EKS (Elastic Kubernetes

Service), and Google GKE (Google Kubernetes Engine).

Kubernetes schedules the containerized application onto a node or cluster depending on

the resource requirements. The smallest schedulable unit in Kubernetes is called a Pod: a

group of one or more containers that share storage and network resources and share the

same specification for how to run the containers. This enables, for example, the deploy-

ment of a containerized application together with a log collector for that application. The

containers in a Pod are always co-located on the same node and co-scheduled, analogous

to applications that would have run on the same (virtual) machine. An example of this is

shown in Figure 6.1.

Figure 6.1: Mapping from virtual machine with applications to Kubernetes. Image from (6)

A Pod can be scheduled in multiple ways:

• Deployments: Describes the desired state of Pods with for example ReplicaSets, a

new state for the Pods or scaling up a deployment.

• StatefulSets: Like a deployment, but maintains a sticky identity for each of the

Pods: the Pods are created using the same specification, but are not interchangeable.

72

6.2 Distributed Frameworks

• Replicaset: A replicaset maintains a stable set of replica Pods at any time to

guarantee the availability of a specified number of identical Pods.

• Daemonsets: ensures that all nodes of the Kubernetes cluster run a copy of a Pod.

This is useful for example with Pods handling logging, monitoring or cluster storage.

• Jobs: creates one or more Pods and will continue to retry until successful termina-

tion. When a failure occurs, it will retry.

6.2.2 Akka.io

Akka.io1 is a distributed framework using the actor model. The actor model has actors,

which can send messages to other actors, create new actors and change the local state.

This model aims to handle two challenges in concurrent programs: delegate tasks to other

threads with encapsulation without blocking and handling of service faults. To pass tasks

to other threads, actors send messages asynchronously to each other, delegating work to

each other. A message does not have a return value: when a task needs to return a value,

it is done through a message to avoid the original sender from blocking until the return

value. Akka.io provides a set of libraries to use this programming model, as well as libraries

to enable communication with a variety of protocols such as HTTP, gRPC and streaming

data.

6.2.3 Message Passing Interface (MPI)

MPI (20) is a message passing specification used in parallel computing. It provides routines

to enable communication between threads on the same machine or threads on multiple

different machines. MPI defines data types to support data to be sent in heterogeneous

environments. In addition, it provides the specification of functions to enable point-to-

point communication between processes (send/receive) as well as collective communication

functions, such as broadcast and scatter to send the data to multiple threads and gather

to receive the data or reduce functions to aggregate results. MPI is commonly used in

High Performance Computing (HPC) environments. Since MPI is a specification, multiple

implementations exist, such as OpenMPI2 and Intel MPI3.

1https://akka.io
2https://www.open-mpi.org
3https://www.intel.com/content/www/us/en/developer/tools/oneapi/mpi-library.html

73

https://akka.io
https://www.open-mpi.org
https://www.intel.com/content/www/us/en/developer/tools/oneapi/mpi-library.html

6. TOOLS FOR DISTRIBUTED BENCHMARKING

74

7

Blueprint for a Distributed
Benchmark Framework

The distributed driver allows horizontally scaling the driver and target distributed database

systems for benchmarking. However, there are challenges in creating a distributed driver.

First, the workload needs to be distributed evenly across the clients, such that the work

a client receives has roughly the same runtime as other clients. We elaborate on the dis-

tribution of the workload in Section 7.1. Second, the clients need to communicate the

completion time to the other clients. This is required since the interactive driver uses

dependency tracking for the update streams and complex queries. The design of the dis-

tributed driver, including communication and setup, is discussed in Section 7.2.

7.1 Distributing the Benchmark Workload

The complex read queries are initialized during the startup of the driver and scheduled

during the benchmark, with the start time of the first query depending on the earliest

scheduled update operation. The complex operations are created in an infinite increment-

ing loop in the single node driver (see Section 2.6.5.2), with the scheduled time depending

on the frequency of a query. While the update streams can be partitioned using round-

robin (the same strategy used in the Hadoop Datagen) to distribute scheduled operations

evenly across clients, the complex read streams are challenging to partition since the (ex-

pected)1 runtimes per query can differ a lot, leading to unbalanced runtimes for clients in

1The expected runtimes refers to the frequency assigned to a complex read query: if the frequency
number is lower, that query is scheduled more often to have an approximately equal amount of total
runtime for queries with higher frequency numbers.

75

7. BLUEPRINT FOR A DISTRIBUTED BENCHMARK FRAMEWORK

a distributed setting. To partition the complex reads, we will discuss four strategies.

1. Serialize the entire workload, then partition We first create the workload stream

together with the update streams, and afterward we partition the workload over the number

of clients. Each client then gets an individual stream to execute until exhausted. An

advantage of this approach is that the logic in the client is simple: it only needs to execute

each operation from the stream and communicate the dependency time every Tsafe time.

Additionally, this partitions the substitution parameters preventing a query from being

executed by all the clients with the same parameters. A disadvantage is the distribution of

queries over the clients: this approach assumes the runtimes are partitioned equally while

that may not be the case since a partition can be assigned multiple short-running queries.

To check how the queries would be distributed over multiple clients, we try the round-robin

approach and frequency-based balancing. With frequency-based balancing, we partition

the queries using their frequencies as a weight, since the frequency is tied to the average

runtime of a query1. Each client then receives a complex read stream with approximately

the same average runtime.

2. Operation skipping based on node ID This approach, each node is assigned an

ID n based on the total number of nodes N . Then, each node will create the workload

stream and execute the n ,n+N, . . . n+ iN operation in the stream. This way the workload

does not have to be generated and serialized before execution. In principle, the execution

is the same as serializing the workload and partitioning it afterward using a round-robin

approach. However, this approach does not require sending a serialized workload, making

distribution easier at the expense of a client with more complex logic to generate the

complex reads.

3. Recalculate frequencies and assign different start times The frequencies are

used to determine the scheduling distance between executed query operations per type.

When the frequencies are not changed in a distributed setup and each client N will execute

the complex reads as scheduled with a single node, each query type will be executed N

times more (the number of clients). This will result in the benchmark being unbalanced

between complex, short and update operations. If the frequencies are multiplied by N , the

scheduled time between operations of the same query time increases. However, this still

does not prevent having all the clients execute the same query at once. After scheduling
1The frequencies are set so each query is equally important in the benchmark (see Section 2.6.5.2)

76

7.2 System Design

the complex streams, the client skips n amount of complex streams and shifts the start

time to the first time in the complex stream, which will ensure that each client starts with

a different query and the start times in the stream are shifted so each client will execute a

different complex query.

4. Central operation queue with operation batches Using this approach lets a

coordinator create the workload and create batches with complex read queries, which can

then be fetched by a client when requesting new operations. Each operation batch can then

be balanced by the coordinator with approximately the same amount of complex reads with

the same frequencies. Each batch contains multiple complex reads and a client can request

a new one before it runs out of operations. This way, the client does not have to wait for

new operations, creating a potential bottleneck. A disadvantage of this approach is that

a coordinator needs to be created: the batches need to be large enough to hide potential

latency between the coordinator and client. This also requires an additional channel of

communication to get the batches, next to the communication of the dependency time.

Because of the additional complexity and the communication overhead, this approach will

not be taken into consideration.

7.2 System Design

To create the distributed driver, we use the Kubernetes framework (see Section 6.2). We

choose this framework above others since this is framework can be run on most public cloud

providers as well as on-premise setups. Additionally, it allows us to separate required ser-

vices to simplify the implementation and maintenance.

In Section 2.6.5, the components of the driver are shown. To design the distributed

driver, we identify the following required components:

• Client: The client should be able to execute queries to the SUT and communicate

their completion time with the other clients. The client has two components: the

first component is the driver that executes the query and logs the result. The second

component is specific to the SUT and contains the required logic to create a con-

nection with the SUT, the query templates and individual query handlers that are

responsible for converting fields, e.g., datetimes, to the format used by the SUT.

77

7. BLUEPRINT FOR A DISTRIBUTED BENCHMARK FRAMEWORK

• Communication service: The clients should be able to communicate their latest

completion time with each other.

• Coordinator: The clients need to be deployed by a coordinator that keeps the state

of the clients: (startup, running, failed, completed) and assigns each client an update

stream and the number of operations to execute.

• Logging & Observability: The clients produce logs of the executed queries, their

throughput and the current state. The logs are then collected and should be observ-

able by the user. This gives insight into the state during the benchmark as well as

access to logs for evaluation/debugging.

The system design is based on the proposed design in (29), where a benchmark environ-

ment is mapped to Kubernetes. However, in our design, the responsibility of deploying the

SUT is left to the user as the SUT can run in a container, but can also be deployed outside

the cluster. Furthermore, the distributed interactive benchmark driver requires multiple

clients to communicate with each other. In the following subsections, we will dive into the

details of each component. The components are chosen from the CNCF (12) Landscape1,

providing an overview of available tools.

7.2.1 Logging & Observability

During benchmark execution, the state of the benchmark as well as the results must be

communicated to the user. This is done by monitoring each client’s logs and storing them

in a database where the results can be queried by a dashboard. To collect the logs, Fluentd2

is used. Fluentd is an open-source data collector, part of the CNCF member projects. It

collects the logs as a stream, then writes the data to Prometheus3, a monitoring system and

time series database. This allows for collecting the logs in a central place and querying

them. The logs can then be queried using the Grafana4 dashboard, which allows for

querying and visualizations of the data. The logging workflow is shown in Figure 7.1.

7.2.2 Communication

In between the clients, their local Completion time needs to be communicated to the other

clients for dependency tracking. The clients, therefore, communicate with a global com-
1https://landscape.cncf.io
2https://www.fluentd.org
3https://prometheus.io
4https://grafana.com

78

https://landscape.cncf.io
https://www.fluentd.org
https://prometheus.io
https://grafana.com

7.2 System Design

Figure 7.1: Workflow of the logging for the distributed driver

pletion time service, which is a separate Pod in the Kubernetes cluster. The service keeps

track of all the local completion times and clients can request the global completion time.

The communication is done through a service mesh1. A service mesh is a way to manage

the service-to-service communication, in this case, the communication of all the clients

with the completion time service. Istio2 is a service mesh providing this communication

service. It runs alongside each Pod, also known as sidecars. The communication logic is

therefore separated from the client, simplifying the implementation of the client. Using the

service mesh can also help in tracing requests and debugging the communication between

the clients. If more fine-grained tracing is required, services like Jaeger3 can be used to

observe networking communication.

Another consideration is the time between the scheduled update operation and their

dependent date and the relation with the latency of the driver clients with the completion

time service. The ∆T between scheduled and dependent operations have a minimum of

10,000 milliseconds, assuming TCR = 1.0, not taking the execution time of the update into

account. When a lower value for the TCR is used, the ∆T will be smaller. Therefore, for

communication, the latency should be lower than TCR × 10000 + Tmax, where Tmax is the

execution time of a query specific to the system.

7.2.3 Deployment

To deploy the benchmark on a Kubernetes cluster in a reproducible way, a Kubernetes Op-

erator is created. An Operator allows to define Custom Resource Definitions regarding the

driver components and to deploy them using the Kubernetes API. The Operator contains

the definitions required for starting the environment with the specified number of clients

and their properties, which can be configured by the user in a YAML file. After deploy-

ment, the operator assigns each client an update stream partition and starts the benchmark

once all clients are up and running. This requires the update streams to be accessible for
1https://www.redhat.com/en/topics/microservices/what-is-a-service-mesh
2https://istio.io
3https://www.jaegertracing.io

79

https://www.redhat.com/en/topics/microservices/what-is-a-service-mesh
https://istio.io
https://www.jaegertracing.io

7. BLUEPRINT FOR A DISTRIBUTED BENCHMARK FRAMEWORK

the clients and already partitioned. The Operator contains logic to observe the state of

the clients. Each client communicates its state whether it is initializing, started, stopped

or failed. The distributed driver architecture for Interactive v2.0 is given in Figure 7.2.

Deploys

Installs

Observe

Fetch

Stores

User

reacts
Kubernetes API Start/Stop

Stores

updates state
Operator

Communicate
Driver Client n

Results

QueriesGrafana

Helm

MonitorsPrometheus

Time
Coordinator

Clients

Driver Client 3

Driver Client 2

Driver Client 1

Streams

n update
streams

System
Under

Test

Figure 7.2: Distributed driver architecture. Orange shows the elements that are present in
the Kubernetes cluster, Yellow are the external components that need configuration, Blue are
the components specifically for the distributed driver.

80

8

Evaluation of Partitioning Strategies

In this section we evaluate partitioning strategies discussed in Section 7.1. Three workload

partitioning strategies are evaluated by simulating the complex read scheduler: round-

robin distribution, frequency-based distribution and frequency recalculation using SF10.

As approximation for the relative runtimes per partition, we use the mean runtimes from

the results of Neo4j in Section 4.2.2. While the runtimes per database system is different

and not known prior to benchmarking a system, it serves as a practical example how the

partitioning of the workload affects client total runtimes.

8.1 Complex Read Partitioning

The scheduling of complex reads is explained in Section 2.6.5. To simulate the scheduler

from the interactive driver, we use Algorithm 2. This produces a stream of complex queries

with their scheduled time with the following assumptions:

• The time compression ratio of the scheduled queries equals TCR = 1.0

• The amount of scheduled operations is 10,000

• The query frequencies and interleaves used are from the SF10 workload

In Figure 8.1 we show the relative runtime per thread for three different partitioning

strategies: round-robin distribution of queries, frequency-based partitioning and frequen-

cies based on the number of clients. With round-robin and frequency-based partitioning,

we observe that when the number of clients increases, the relative difference in runtimes

per client increases: with 32 clients, the client with the lowest runtime has 2% of the total

runtime and the client with the highest runtime approximately 4%, double the runtime

81

8. EVALUATION OF PARTITIONING STRATEGIES

compared to the lowest. When running the benchmark, this means that the client with

the lowest runtime is idle half of the benchmark duration. When the frequencies are recal-

culated based on the number of threads, we observe a more even distribution in runtimes

compared to the two previous strategies. The difference between the smallest and highest

runtime is 0.27% when using 32 clients compared to 2.09% and 2.06% for round-robin

and frequency-based partitioning respectively. Table 8.1 shows the amount of scheduled

queries per partitioning strategy per type when scheduling 10,000 operations and select-

ing the first hour of the scheduled queries. round-robin and frequency-based partitioning

have the same amount of scheduled operations per query type. This is expected since the

operation stream is created before partitioning. When the frequencies are recalculated,

the number of scheduled queries is lower for queries with low frequencies, e.g., Query 8

and Query 11. Reason for this difference is the additional time between queries because

of the increased frequencies. However, this difference can be overcome by adjusting the

frequencies for these queries.

Algorithm 2 Workload distribution: Complex read scheduler
Input: G, Tstart, Tinterleave, Noperations, fquery
Output: Scheduled operations Soperations of length Noperations

Initialize operation stream Soperations

Initialize list with first scheduled time per query LTscheduled
using Tstart

for N in Noperations do
Get earliest Tscheduled query from L
Add query to operation stream
Increase Tscheduled for query with Tinterleave × fquery

end for

82

8.1 Complex Read Partitioning

0 2 4 6
n-thread

0.0

2.5

5.0

7.5

10.0

12.5

Re
la

tiv
e

ru
nt

im
e

(%
)

8 thread partitioning
Round Robin

0 5 10 15
n-thread

0

2

4

6

Re
la

tiv
e

ru
nt

im
e

(%
)

16 thread partitioning
Round Robin

0 10 20 30
n-thread

0

1

2

3

4

Re
la

tiv
e

ru
nt

im
e

(%
)

32 thread partitioning
Round Robin

0 2 4 6
n-thread

0.0

2.5

5.0

7.5

10.0

12.5

Re
la

tiv
e

ru
nt

im
e

(%
)

8 thread partitioning
Frequency Partitioning

0 5 10 15
n-thread

0

2

4

6

Re
la

tiv
e

ru
nt

im
e

(%
)

16 thread partitioning
Frequency Partitioning

0 10 20 30
n-thread

0

1

2

3

4
Re

la
tiv

e
ru

nt
im

e
(%

)
32 thread partitioning
Frequency Partitioning

0 2 4 6
n-thread

0.0

2.5

5.0

7.5

10.0

12.5

Re
la

tiv
e

ru
nt

im
e

(%
)

8 thread partitioning
Frequency Recalculation

0 5 10 15
n-thread

0

2

4

6

Re
la

tiv
e

ru
nt

im
e

(%
)

16 thread partitioning
Frequency Recalculation

0 10 20 30
n-thread

0

1

2

3

Re
la

tiv
e

ru
nt

im
e

(%
)

32 thread partitioning
Frequency Recalculation

Figure 8.1: Workload distribution: relative runtimes per thread for three different partition-
ing strategies.

83

8. EVALUATION OF PARTITIONING STRATEGIES

Query Round-robin Frequency-
based

Frequency
Recalculation

LdbcQuery1 854 854 849
LdbcQuery2 600 600 599
LdbcQuery3a 120 120 120
LdbcQuery3b 120 120 120
LdbcQuery4 617 617 614
LdbcQuery5 336 336 336
LdbcQuery6 94 94 88
LdbcQuery7 411 411 408
LdbcQuery8 1,481 1,481 1,474
LdbcQuery9 77 77 72
LdbcQuery10 634 634 630
LdbcQuery11 1,169 1,169 1,166
LdbcQuery12 505 505 504
LdbcQuery13a 584 584 584
LdbcQuery13b 584 584 584
LdbcQuery14a 284 284 280
LdbcQuery14b 284 284 280

Table 8.1: Workload distribution: scheduled counts per query for each workload partitioning
strategy by scheduling 10000 queries and selecting the first hour of scheduled queries.

84

9

Related Work on Distributed
Benchmark Frameworks

This section provides information about current work on distributed benchmark frame-

works.

9.1 Orchestrating DBMS Benchmarking in the Cloud with
Kubernetes

Erdelt (17) provides a way to organize DBMS benchmarking in the cloud using a Kuber-

netes cluster. Their motivation is to create a benchmark workflow that can be executed in

parallel to speed up the benchmarking process for different scales and multiple hardware

configurations when using a heterogeneous cluster.

They identified the following components typically found in DBMS benchmarks and

mapped those components to Kubernetes objects. To begin, the Loader (bulk) loads the

initial data stored in a persistent volume on the cluster into a Master, the DBMS under

test, and Workers, optional parts of the DBMS if it supports distributed setup. This Loader

is an external shell script that only runs during initialization and therefore does not run on

the cluster. The Maintainer, which executes update queries to update the contents of the

database, is a separate thread outside the cluster, similar to the Loader. When executing

the benchmark, the orchestrator deploys multiple Pods for the query executors in a queue

with different configurations per Pod. While there is a benchmark configuration in the

queue, the benchmark will execute until termination. The benchmark results are collected

by a metrics collector, running as a Pod on the cluster, and stored in persistent storage

85

9. RELATED WORK ON DISTRIBUTED BENCHMARK
FRAMEWORKS

where a dashboard can access the data.

While their work describes a mapping between benchmark and Kubernetes components,

several things differ in their approach. First, they designed a benchmark workflow on

Kubernetes to parallelize the entire workflow, not the number of clients. As a result, the

benchmark driver (Query Executor) can use multiple threads but uses one container; there-

fore, the driver is not distributed. Second, the results exclude the use of the Maintainer,

which is responsible for updating the data in the DBMS. In the design, the Maintainer was

not part of the driver but a separate script triggered outside the cluster.

9.2 Reproducible Benchmarking of Cloud-Native Applications
with the Kubernetes Operator Pattern

Henning et al. (29) describes a way to implement a benchmark capable of benchmarking

cloud-native (12) applications. Cloud-native applications are typically several separate

processes running in isolated containers, scheduled on different computer nodes, requiring

application-level configuration, network setup, and integration of different storage systems,

making benchmarking such applications complex. They provide a role and data model for

describing benchmarks and their execution to simplify defining, distributing, and executing

benchmarks. They identified two roles. First is the Benchmark Designer’s role, who knows

the SUTs and how to interpret result metrics, creating a benchmarking tool or artifact. The

Benchmarker role executes the benchmark and intends to compare and rank different SUTs.

They propose to use the Kubernetes Operator pattern to implement a benchmark, where

combining the knowledge of operating Kubernetes with domain knowledge is possible. The

operational knowledge can be implemented using Kubernetes Custom Resource Definitions

(CRDs). Two CRDs are defined: one for describing the benchmark configuration, the SUT

benchmarking method, which is stateless since they can execute arbitrarily often, and one

for execution, which has a state like pending, running, finished or failed. Metrics are col-

lected using Prometheus, a monitoring service, which a dashboard like Grafana can access.

This approach separates the setup of the benchmark and the execution and bundles in one

file the experimental setup, manageable with Kubernetes.

86

9.3 Is It Safe To Dockerize My Benchmark?

Their work targets applications in general and not specifically DBMSs, and the paper

only describes a model with the required components. The author gives an implementation

for benchmarking the scalability of distributed stream processing engines. However, they

combined the definition of the SUT and benchmark tool into the CRDs description, which

requires changes to make a benchmark tool using this approach generally applicable to

other SUTs.

9.3 Is It Safe To Dockerize My Benchmark?

Grambow et al. (25) found that dockerizing1 a DBMS benchmark has a measurable and

non-constant influence on the results. The experiments ran 30 runs, using the YCSB work-

load, with four different setups in AWS (using m3.medium and m3.large machines): no

dockerization, only dockerized benchmarking client, dockerized SUT, and full dockeriza-

tion. They found that, when comparing the dockerized results with the non-dockerized

results, the average latency ranged from -1% 7% when only the client is dockerized, -

3% 7% when only the SUT is dockerized, and -2% 12% when everything was dockerized.

In addition, they noted that the differences and variance in performance by Docker are

likely the effects of performance variances in the underlying virtual machine. Finally, they

conclude that the actual numbers are too unreliable to measure system performance. How-

ever, in Iosup et al. (32), cloud services have variating performance based on yearly and

daily time patterns, influencing the virtual machine’s performance. Since the experiments

with the Docker containers are executed on a virtual machine in the cloud susceptible to

these performance variabilities, the benchmark results with the dockerized results are not

conclusive, making it difficult to interpret the results. Therefore, the effect of dockerizing

the SUT should be evaluated on a bare-metal machine.

9.4 DIAMetrics

DIAMetrics (15) is a benchmark framework developed at Google. Being developed to test

multiple internal query engines (F1, Procella, Dremel), the framework provides a way to

test these with different workloads to serve different use cases, either synthetic benchmarks

like TPC-H or production-like data that is anonymized using the framework. In addition, it

can extract workloads from query engine logs for custom benchmark generation. However,
1dockerization is a container based on a Docker image, using the docker runtime

87

9. RELATED WORK ON DISTRIBUTED BENCHMARK
FRAMEWORKS

the framework can only parallelize the workload runner by sending the same workload of

all targeted systems for execution in parallel, making this different from the driver for

LDBC SNB-I, where the driver must execute the queries in parallel while tracking the

dependencies.

9.5 PEEL

PEEL is an open-source framework to define, execute, analyze and share experiments (9).

It can automatically orchestrate experiments and handles the systems setup, configuration,

deployment, tear-down and cleanup, and the collection of the logs. In addition, it allows

for hardware-independent specification. It currently supports JVM-based systems. The

authors tested PEEL with a supervised machine-learning workload on Apache Spark and

Apache Flink. The main goal is to automate all the intermediate steps a user needs to do

when benchmarking these systems:

• setting up the distributed file system (HDFS),

• ingesting and transforming the data set used for the benchmark,

• submitting the benchmark workload as a job, metrics collection, and tear-down of

the SUT, together with cleanup of the file system.

88

10

Future Work

The work in this thesis project touched upon several parts of the LDBC Social Network

Benchmark suite to include deletes, improve scalability, and create a reference distributed

benchmark driver. In the following, we propose several points for future work.

Integrating update stream creation into the Spark Datagen The current update

stream output of the Spark Datagen (Datagen version v0.5.1) is not suitable for the

Interactive workload since it does not contain the dependency time required in the driver to

prevent insertion/deletion of entities that have dependencies. We circumvent this deficiency

with an external Python/SQL script, selecting the data from the raw temporal graph and

selecting the dependency time. However, Datagen should be altered to include this property

in the update streams.

Investigate events in Spark data set The Spark data set shows a skew of events

towards the end of the simulation timeframe with almost no noticeable spiking events

during the simulation. To remove the skew towards the end of the simulation window and

to introduce spiking events, the Spark Datagen’s configuration and method of generating

temporal attributes should be investigated.

Temporal factor tables The current factor tables lack temporal information, leading

to parameter curation with inaccurate information. While not all queries are affected by

this problem, queries that need to traverse the friendship network or the number of friends’

messages can benefit from this information, improving parameter curation. In addition,

the effects of implicit deletes need to be taken into account as well: once a person is

89

10. FUTURE WORK

deleted from the network, their comments, posts, and forums are deleted as well, affecting

the respective factor tables.

Implementing distributed driver This thesis only provides a design for a distributed

driver, investigating the tools and frameworks to use as well as a suitable partitioning

strategy for complex read queries. Therefore, an implementation of the distributed driver

is left out of scope of this thesis.

Integration of the SNB BI workload into the driver The refactoring of the driver

enables more straightforward implementation of other workloads, such as the SNB Business

Intelligence workload, which uses the same data set. By implementing this, users can

execute the BI benchmark with concurrent updates, which is currently unavailable in the

Python driver of the BI workload, despite being allowed by the benchmark specification (1,

Section 7.5). Extending the driver with this workload makes it more versatile and solves

the complex endeavor of creating a separate BI driver that handles concurrent update

streams with dependencies.

90

11

Conclusion

In this thesis, we modernized the LDBC SNB Interactive Workload by improving its scal-

ability, feature coverage, and usability. The LDBC SNB Interactive Driver code has un-

dergone a major refactor to improve performance and usability. We added support for the

LDBC SNB Spark Datagen to the driver, enabling the use of larger scale factors and up-

date streams with delete operations. This thesis created a temporal parameter generation

and added support for temporal substitution parameters in the driver, allowing to query

freshly inserted entities during the benchmark. Additionally, we provided a distributed

driver design. Lastly, we created a reference implementation for Microsoft SQL Server.

The following provides answers to the research questions of this thesis.

How can deletions be integrated into the Social Network Benchmark Interac-

tive? To integrate deletions in the SNB Interactive driver, we changed the data set from

the LDBC SNB Hadoop Datagen to the LDBC SNB Spark Datagen, producing a tempo-

ral graph with delete operations. This change required a separate, batched update stream

converter since the update streams from the Spark Datagen do not disclose dependency

time information. In addition, the update stream formats changed, requiring changes in

the driver to support loading Parquet files. Using a batched loader, the driver can support

the loading of update streams for larger scale factors and handles the parallelization of

the update streams internally. The new loader removes the need for users to partition the

update streams first and control parallelization with the amount of update stream files.

The delete queries are integrated into the driver and the reference implementations. Our

analysis of the characteristics of the data sets produced by the Spark Datagen (Section 4.2)

revealed several differences regarding the number of events and missing flashmob events in

91

11. CONCLUSION

the Spark data set. The changed characteristics require additional investigation to ensure

that the benchmark sufficiently covers the challenges of bursting temporal events.

How to generate parameters with similar behavior to the query template with

the inclusion of inserted and deleted nodes and edges? Including deletes in the

Interactive benchmark affects the substitution parameters used in the query templates,

which can result in unpredictable query runtimes. We solve this problem by introducing

temporal parameter curation, which allows generating parameters in daily batches with

approximately the same runtime behavior. However, the factor table statistics are affected

by the dynamic nature of the temporal graph, giving inaccurate information. To mitigate

this problem for the path queries, we created a path curation that provides valid 4-hop

paths between two persons. Experiments show that the temporal parameter curation gives

a smaller standard deviation in runtimes compared to the v1.0 parameter generation for

only 6 of the 14 queries, which is related by the inaccuracy of the used factor tables.

The new parameter generator version demonstrates better scalability than the parameter

generation in v1.0, achieving up to 100× better runtimes for SF1,000. We show that

the new parameter generation can generate parameters for SF3,000 and SF10,000. The

temporal parameters required changes in the query execution to make the driver aware of

when to execute a parameter by using a start and expiry date for each parameter given by

the temporal parameter generation.

What effect does the inclusion of deletion operations have on the performance

of the systems under test? Delete operations in the Interactive benchmark can have

performance implications for the SUT. Experiments using Neo4j and Umbra show that

deletions for scale factors 10, 30, 100, and 300 do not show significant differences in runtimes

when removing an edge. However, when a person is removed, the cascading effect of the

deletion increases when using larger scale factors. In addition, experiments done on DBMS

X demonstrate that cascading deletes after the deletion of a node can have significant

performance implications on certain systems.

How can the Interactive benchmark driver be made distributed? We provide a

distributed driver design based on Kubernetes, allowing deployment in different environ-

ments. Experiments show that partitioning the complex read operations such that runtimes

per client are best done by recalculating the query frequencies. This allows for balanced

total runtimes per client. However, Round-robin and frequency-based partitioning showed

92

that some clients are idle half the time; therefore, they are unsuitable as a partitioning

strategy. Further research is required to determine an optimal partitioning strategy for the

update streams.

93

11. CONCLUSION

94

References

[1] Renzo Angles, János Benjamin Antal, Alex Averbuch, Peter Boncz,

Orri Erling, Andrey Gubichev, Vlad Haprian, Moritz Kaufmann,

Josep Lluís Larriba Pey, Norbert Martínez, József Martaon, Marcus

Paradies, Minh-Duc Pham, Arnau Prat-Pérez, Mirko Spasić, Benjamin A.

Steer, Gábor Szárnyas, and Jack Waudby. The LDBC Social Network

Benchmark, 2021. vii, 1, 9, 14, 18, 21, 22, 24, 37, 38, 39, 40, 55, 65, 90, 109, 110,

111, 112, 113, 114

[2] Renzo Angles, Marcelo Arenas, Pablo Barcelo, Peter Boncz, George

Fletcher, Claudio Gutierrez, Tobias Lindaaker, Marcus Paradies, Ste-

fan Plantikow, Juan Sequeda, Oskar van Rest, and Hannes Voigt. G-

CORE: A Core for Future Graph Query Languages. In Proceedings of the 2018

International Conference on Management of Data, SIGMOD ’18, page 1421–1432,

New York, NY, USA, 2018. Association for Computing Machinery. Available from:

https://doi.org/10.1145/3183713.3190654. 1

[3] Renzo Angles, Marcelo Arenas, Pablo Barceló, Aidan Hogan, Juan L.

Reutter, and Domagoj Vrgoc. Foundations of Modern Query Languages

for Graph Databases. ACM Comput. Surv., 50(5):68:1–68:40, 2017. Available from:

https://doi.org/10.1145/3104031. 66

[4] Renzo Angles, Peter Boncz, Josep Larriba-Pey, Irini Fundulaki, Thomas

Neumann, Orri Erling, Peter Neubauer, Norbert Martinez-Bazan,

Venelin Kotsev, and Ioan Toma. The Linked Data Benchmark Coun-

cil: A graph and RDF industry benchmarking effort. ACM SIGMOD Record,

43(1):27–31, 2014. 1

[5] Timothy G Armstrong, Vamsi Ponnekanti, Dhruba Borthakur, and

Mark Callaghan. Linkbench: a database benchmark based on the face-

95

https://doi.org/10.1145/3183713.3190654
https://doi.org/10.1145/3104031

REFERENCES

book social graph. In Proceedings of the 2013 ACM SIGMOD International Con-

ference on Management of Data, pages 1185–1196, 2013. 2, 66

[6] The Kubernetes Authors. Overview of Kubernetes, 2023. Available from:

https://kubernetes.io/docs/concepts/overview/. ix, 72

[7] Bradley R Bebee, Daniel Choi, Ankit Gupta, Andi Gutmans, Ankesh

Khandelwal, Yigit Kiran, Sainath Mallidi, Bruce McGaughy, Mike

Personick, Karthik Rajan, et al. Amazon Neptune: Graph Data

Management in the Cloud. In International Semantic Web Conference

(P&D/Industry/BlueSky), 2018. 1, 10, 11

[8] Maciej Besta, Emanuel Peter, Robert Gerstenberger, Marc Fischer,

Michal Podstawski, Claude Barthels, Gustavo Alonso, and Torsten

Hoefler. Demystifying Graph Databases: Analysis and Taxonomy of Data

Organization, System Designs, and Graph Queries. CoRR, abs/1910.09017,

2019. Available from: http://arxiv.org/abs/1910.09017. 61

[9] Christoph Boden, Alexander Alexandrov, Andreas Kunft, Tilmann

Rabl, and Volker Markl. PEEL: A framework for benchmarking dis-

tributed systems and algorithms. In Technology Conference on Performance

Evaluation and Benchmarking, pages 9–24. Springer, 2017. 88

[10] Peter Boncz, Thomas Neumann, and Orri Erling. TPC-H Analyzed: Hid-

den Messages and Lessons Learned from an Influential Benchmark. In

Raghunath Nambiar and Meikel Poess, editors, Performance Characterization

and Benchmarking, pages 61–76, Cham, 2014. Springer International Publishing. 2, 8

[11] Angela Bonifati, Irena Holubová, Arnau Prat-Pérez, and Sherif Sakr.

Graph Generators: State of the Art and Open Challenges. ACM Comput.

Surv., 53(2):36:1–36:30, 2021. Available from: https://doi.org/10.1145/3379445.

14

[12] CNCF. CNCF Cloud Native Definition v1.0, Jun 2018. Available from: https:

//raw.githubusercontent.com/cncf/toc/main/DEFINITION.md. 71, 78, 86

[13] World Wide Web Consortium et al. RDF 1.1 concepts and abstract syn-

tax. 2014. 8, 9

96

https://kubernetes.io/docs/concepts/overview/
http://arxiv.org/abs/1910.09017
https://doi.org/10.1145/3379445
https://raw.githubusercontent.com/cncf/toc/main/DEFINITION.md
https://raw.githubusercontent.com/cncf/toc/main/DEFINITION.md

REFERENCES

[14] Brian F. Cooper, Adam Silberstein, Erwin Tam, Raghu Ramakrishnan,

and Russell Sears. Benchmarking Cloud Serving Systems with YCSB. In

Proceedings of the 1st ACM Symposium on Cloud Computing, SoCC ’10, page 143–154,

New York, NY, USA, 2010. Association for Computing Machinery. Available from:

https://doi.org/10.1145/1807128.1807152. 68

[15] Shaleen Deep, Anja Gruenheid, Kruthi Nagaraj, Hiro Naito, Jeff

Naughton, and Stratis Viglas. Diametrics: benchmarking query engines

at scale. ACM SIGMOD Record, 50(1):24–31, 2021. 87

[16] Alin Deutsch, Nadime Francis, Alastair Green, Keith Hare, Bei Li,

Leonid Libkin, Tobias Lindaaker, Victor Marsault, Wim Martens, Jan

Michels, Filip Murlak, Stefan Plantikow, Petra Selmer, Oskar van

Rest, Hannes Voigt, Domagoj Vrgoč, Mingxi Wu, and Fred Zemke.

Graph Pattern Matching in GQL and SQL/PGQ. In Proceedings of the 2022

International Conference on Management of Data, SIGMOD ’22, page 2246–2258,

New York, NY, USA, 2022. Association for Computing Machinery. Available from:

https://doi.org/10.1145/3514221.3526057. 1, 2, 10

[17] Patrick K. Erdelt. Orchestrating DBMS Benchmarking in the Cloud

with Kubernetes. In Raghunath Nambiar and Meikel Poess, editors, Per-

formance Evaluation and Benchmarking, pages 81–97, Cham, 2022. Springer Interna-

tional Publishing. 85

[18] Orri Erling, Alex Averbuch, Josep Larriba-Pey, Hassan Chafi, Andrey

Gubichev, Arnau Prat, Minh-Duc Pham, and Peter Boncz. The LDBC

social network benchmark: Interactive workload. In Proceedings of the 2015

ACM SIGMOD International Conference on Management of Data, pages 619–630,

2015. 1, 2, 17, 21, 24

[19] Xiyang Feng, Guodong Jin, Ziyi Chen, Chang Liu, and Semih Salihoğlu.

KÙZU Graph Database Management System. In CIDR, 2023. Available from:

https://www.cidrdb.org/cidr2023/papers/p48-jin.pdf. 1

[20] Message P Forum. MPI: A Message-Passing Interface Standard. Technical

report, USA, 1994. 73

[21] Apache Foundation. Apache Parquet, 2022. Available from: https://parquet.

apache.org/. 19

97

https://doi.org/10.1145/1807128.1807152
https://doi.org/10.1145/3514221.3526057
https://www.cidrdb.org/cidr2023/papers/p48-jin.pdf
https://parquet.apache.org/
https://parquet.apache.org/

REFERENCES

[22] Apache Software Foundation. Apache TinkerPop, 2022. Available from:

https://tinkerpop.apache.org. 11

[23] Nadime Francis, Alastair Green, Paolo Guagliardo, Leonid Libkin, To-

bias Lindaaker, Victor Marsault, Stefan Plantikow, Mats Rydberg, Pe-

tra Selmer, and Andrés Taylor. Cypher: An evolving query language for

property graphs. In Proceedings of the 2018 International Conference on Manage-

ment of Data, pages 1433–1445, 2018. 1

[24] Nadime Francis, Alastair Green, Paolo Guagliardo, Leonid Libkin, To-

bias Lindaaker, Victor Marsault, Stefan Plantikow, Mats Rydberg, Pe-

tra Selmer, and Andrés Taylor. Cypher: An evolving query language for

property graphs. In Proceedings of the 2018 International Conference on Manage-

ment of Data, pages 1433–1445, 2018. 9

[25] Martin Grambow, Jonathan Hasenburg, Tobias Pfandzelter, and David

Bermbach. Is It Safe to Dockerize My Database Benchmark? In Proceedings

of the 34th ACM/SIGAPP Symposium on Applied Computing, SAC ’19, pages 341–

344, New York, NY, USA, 2019. Association for Computing Machinery. Available

from: https://doi.org/10.1145/3297280.3297545. 87

[26] Jim Gray. Database and Transaction Processing Performance Handbook,

1993. 7, 14

[27] The PostgreSQL Global Development Group. About Postgres, 2022. Avail-

able from: https://www.postgresql.org/about/. 13

[28] Andrey Gubichev and Peter Boncz. Parameter Curation for Benchmark

Queries. In Raghunath Nambiar and Meikel Poess, editors, Performance

Characterization and Benchmarking. Traditional to Big Data, pages 113–129, Cham,

2015. Springer International Publishing. 2, 21, 23

[29] Sören Henning, Benedikt Wetzel, and Wilhelm Hasselbring. Repro-

ducible Benchmarking of Cloud-Native Applications with the Kubernetes

Operator Pattern. 2021. 78, 86

[30] Torsten Hoefler and Roberto Belli. Scientific benchmarking of parallel

computing systems: twelve ways to tell the masses when reporting perfor-

mance results. In Proceedings of the international conference for high performance

computing, networking, storage and analysis, pages 1–12, 2015. 7

98

https://tinkerpop.apache.org
https://doi.org/10.1145/3297280.3297545
https://www.postgresql.org/about/

REFERENCES

[31] Alexandru Iosup, Tim Hegeman, Wing Lung Ngai, Stijn Heldens, Ar-

nau Prat-Pérez, Thomas Manhardto, Hassan Chafio, Mihai Capotă,

Narayanan Sundaram, Michael Anderson, et al. LDBC Graphalytics:

A benchmark for large-scale graph analysis on parallel and distributed

platforms. Proceedings of the VLDB Endowment, 9(13):1317–1328, 2016. 65

[32] Alexandru Iosup, Nezih Yigitbasi, and Dick Epema. On the performance

variability of production cloud services. In 2011 11th IEEE/ACM International

Symposium on Cluster, Cloud and Grid Computing, pages 104–113. IEEE, 2011. 87

[33] Viktor Leis, Bernhard Radke, Andrey Gubichev, Atanas Mirchev, Pe-

ter Boncz, Alfons Kemper, and Thomas Neumann. Query optimization

through the looking glass, and what we found running the join order bench-

mark. The VLDB Journal, 27(5):643–668, 2018. 8

[34] Scott T. Leutenegger and Daniel Dias. A Modeling Study of the TPC-

C Benchmark. SIGMOD Rec., 22(2):22–31, jun 1993. Available from: https:

//doi.org/10.1145/170036.170042. 67

[35] Matteo Lissandrini, Martin Brugnara, and Yannis Velegrakis. Beyond

macrobenchmarks: microbenchmark-based graph database evaluation. Pro-

ceedings of the VLDB Endowment, 12(4):390–403, 2018. 2, 66

[36] Frank McSherry, Michael Isard, and Derek G Murray. Scalability! But

at what COST. In 15th Workshop on Hot Topics in Operating Systems (HotOS

XV), 2015. 14

[37] Memgraph. Open Source Graph Database, 2022. Available from: https://

memgraph.com/. 10

[38] Amine Mhedhbi, Matteo Lissandrini, Laurens Kuiper, Jack Waudby, and

Gábor Szárnyas. LSQB: A Large-Scale Subgraph Query Benchmark. In

Proceedings of the 4th ACM SIGMOD Joint International Workshop on Graph Data

Management Experiences & Systems (GRADES) and Network Data Analytics (NDA),

GRADES-NDA ’21, New York, NY, USA, 2021. Association for Computing Machin-

ery. Available from: https://doi.org/10.1145/3461837.3464516. 66

[39] Raghunath Othayoth Nambiar and Meikel Poess. The Making of TPC-

DS. In VLDB, 6, pages 1049–1058, 2006. 67

99

https://doi.org/10.1145/170036.170042
https://doi.org/10.1145/170036.170042
https://memgraph.com/
https://memgraph.com/
https://doi.org/10.1145/3461837.3464516

REFERENCES

[40] Neo4j. Neo4j, Oct 2021. Available from: https://neo4j.com/. 1, 8

[41] Thomas Neumann and Michael J. Freitag. Umbra: A Disk-Based System

with In-Memory Performance. In 10th Conference on Innovative Data Systems

Research, CIDR 2020, Amsterdam, The Netherlands, January 12-15, 2020, Online

Proceedings. www.cidrdb.org, 2020. Available from: http://cidrdb.org/cidr2020/

papers/p29-neumann-cidr20.pdf. 13

[42] Ontotext. About GraphDB, 2022. Available from: https://graphdb.ontotext.

com/documentation/10.0/about-graphdb.html. 11

[43] David A. Patterson. For better or worse, benchmarks shape a field:

Technical perspective. Commun. ACM, 55(7):104, 2012. Available from: http:

//doi.acm.org/10.1145/2209249.2209271. 8

[44] Minh-Duc Pham, Peter Boncz, and Orri Erling. S3g2: A scalable

structure-correlated social graph generator. In Technology Conference on Per-

formance Evaluation and Benchmarking, pages 156–172. Springer, 2012. 14

[45] Meikel Poess and Chris Floyd. New TPC Benchmarks for Decision Sup-

port and Web Commerce. SIGMOD Rec., 29(4):64–71, dec 2000. Available from:

https://doi.org/10.1145/369275.369291. 67

[46] Meikel Poess, Bryan Smith, Lubor Kollar, and Paul Larson. TPC-DS,

Taking Decision Support Benchmarking to the next Level. In Proceedings of

the 2002 ACM SIGMOD International Conference on Management of Data, SIGMOD

’02, page 582–587, New York, NY, USA, 2002. Association for Computing Machinery.

Available from: https://doi.org/10.1145/564691.564759. 67

[47] PostGIS. About PostGIS, 2022. Available from: https://postgis.net. 13

[48] Mark Raasveldt, Pedro Holanda, Tim Gubner, and Hannes Mühleisen.

Fair benchmarking considered difficult: Common pitfalls in database per-

formance testing. In Proceedings of the Workshop on Testing Database Systems,

pages 1–6, 2018. 7

[49] Mark Raasveldt and Hannes Mühleisen. DuckDB: An Embeddable An-

alytical Database. In SIGMOD, pages 1981–1984. ACM, 2019. Available from:

https://doi.org/10.1145/3299869.3320212. 35

100

https://neo4j.com/
http://cidrdb.org/cidr2020/papers/p29-neumann-cidr20.pdf
http://cidrdb.org/cidr2020/papers/p29-neumann-cidr20.pdf
https://graphdb.ontotext.com/documentation/10.0/about-graphdb.html
https://graphdb.ontotext.com/documentation/10.0/about-graphdb.html
http://doi.acm.org/10.1145/2209249.2209271
http://doi.acm.org/10.1145/2209249.2209271
https://doi.org/10.1145/369275.369291
https://doi.org/10.1145/564691.564759
https://postgis.net
https://doi.org/10.1145/3299869.3320212

REFERENCES

[50] Ian Robinson, Jim Webber, and Emil Eifrem. Graph databases: new opportu-

nities for connected data. O’Reilly Media, Inc., 2015. 8

[51] Marko A. Rodriguez. The Gremlin Graph Traversal Machine and Lan-

guage (Invited Talk). In Proceedings of the 15th Symposium on Database Pro-

gramming Languages, DBPL 2015, page 1–10, New York, NY, USA, 2015. Associa-

tion for Computing Machinery. Available from: https://doi.org/10.1145/2815072.

2815073. 11

[52] Michael Rudolf, Marcus Paradies, Christof Bornhövd, and Wolfgang

Lehner. The graph story of the SAP HANA database. In Volker

Markl, Gunter Saake, Kai-Uwe Sattler, Gregor Hackenbroich, Bern-

hard Mitschang, Theo Härder, and Veit Köppen, editors, Datenbanksys-

teme für Business, Technologie und Web (BTW) 2037, pages 403–420, Bonn, 2013.

Gesellschaft für Informatik e.V. 2, 10

[53] Siddhartha Sahu, Amine Mhedhbi, Semih Salihoglu, Jimmy Lin, and

M Tamer Özsu. The ubiquity of large graphs and surprising challenges

of graph processing. Proceedings of the VLDB Endowment, 11(4):420–431, 2017.

1, 2

[54] Sherif Sakr, Angela Bonifati, Hannes Voigt, Alexandru Iosup, Khaled

Ammar, Renzo Angles, Walid Aref, Marcelo Arenas, Maciej Besta, Pe-

ter A Boncz, et al. The future is big graphs: a community view on graph

processing systems. Communications of the ACM, 64(9):62–71, 2021. 1

[55] Margo I. Seltzer, David Krinsky, Keith A. Smith, and Xiaolan Zhang.

The Case for Application-Specific Benchmarking. In Peter Druschel, ed-

itor, Proceedings of The Seventh Workshop on Hot Topics in Operating Systems,

HotOS-VII, Rio Rico, Arizona, USA, March 28-30, 1999, pages 102–109. IEEE Com-

puter Society, 1999. Available from: https://doi.org/10.1109/HOTOS.1999.798385.

7

[56] Supreeth Shastri, Vinay Banakar, Melissa Wasserman, Arun Kumar,

and Vijay Chidambaram. Understanding and Benchmarking the Impact

of GDPR on Database Systems. Proc. VLDB Endow., 13(7):1064–1077, 2020.

Available from: http://www.vldb.org/pvldb/vol13/p1064-shastri.pdf. 3

101

https://doi.org/10.1145/2815072.2815073
https://doi.org/10.1145/2815072.2815073
https://doi.org/10.1109/HOTOS.1999.798385
http://www.vldb.org/pvldb/vol13/p1064-shastri.pdf

REFERENCES

[57] Christian L. Staudt, Aleksejs Sazonovs, and Henning Meyerhenke. Net-

worKit: A tool suite for large-scale complex network analysis. Netw. Sci.,

4(4):508–530, 2016. Available from: https://doi.org/10.1017/nws.2016.20. 45, 56

[58] Michael Stonebraker and Lawrence A Rowe. The design of Postgres.

ACM Sigmod Record, 15(2):340–355, 1986. 13

[59] Dávid Szakállas. Speeding up LDBC SNB Datagen, Jun 2020. Available from:

https://ldbcouncil.org/post/speeding-up-ldbc-snb-datagen/. 19

[60] Gábor Szárnyas, Arnau Prat-Pérez, Alex Averbuch, József Marton,

Marcus Paradies, Moritz Kaufmann, Orri Erling, Peter Boncz, Vlad

Haprian, and János Benjamin Antal. An early look at the LDBC social

network benchmark’s business intelligence workload. In Proceedings of the 1st

ACM SIGMOD Joint International Workshop on Graph Data Management Experi-

ences & Systems (GRADES) and Network Data Analytics (NDA), pages 1–11, 2018.

65

[61] Gábor Szárnyas, Jack Waudby, Benjamin A. Steer, Dávid Szakállas, Al-

tan Birler, Mingxi Wu, Yuchen Zhang, and Peter A. Boncz. The LDBC

Social Network Benchmark: Business Intelligence Workload. Proc. VLDB

Endow., 16(4):877–890, 2022. Available from: https://www.vldb.org/pvldb/vol16/

p877-szarnyas.pdf. 1, 65

[62] Daniel ten Wolde, Tavneet Singh, Gábor Szárnyas, and Peter Boncz.

DuckPGQ: Efficient property graph queries in an analytical RDBMS.

In CIDR, 2023. Available from: https://www.cidrdb.org/cidr2023/papers/p66-

wolde.pdf. 2

[63] Yuanyuan Tian, En Liang Xu, Wei Zhao, Mir Hamid Pirahesh, Sui Jun

Tong, Wen Sun, Thomas Kolanko, Md. Shahidul Haque Apu, and Huijuan

Peng. IBM Db2 Graph: Supporting Synergistic and Retrofittable Graph

Queries Inside IBM Db2. In Proceedings of the 2020 ACM SIGMOD International

Conference on Management of Data, SIGMOD ’20, page 345–359, New York, NY,

USA, 2020. Association for Computing Machinery. Available from: https://doi.

org/10.1145/3318464.3386138. 2

[64] TPC. TPC-C Homepage. Available from: https://www.tpc.org/tpcc/default5.

asp. 67

102

https://doi.org/10.1017/nws.2016.20
https://ldbcouncil.org/post/speeding-up-ldbc-snb-datagen/
https://www.vldb.org/pvldb/vol16/p877-szarnyas.pdf
https://www.vldb.org/pvldb/vol16/p877-szarnyas.pdf
https://www.cidrdb.org/cidr2023/papers/p66-wolde.pdf
https://www.cidrdb.org/cidr2023/papers/p66-wolde.pdf
https://doi.org/10.1145/3318464.3386138
https://doi.org/10.1145/3318464.3386138
https://www.tpc.org/tpcc/default5.asp
https://www.tpc.org/tpcc/default5.asp

REFERENCES

[65] TPC. TPC-DS Homepage. Available from: https://www.tpc.org/tpcds/

default5.asp. 67

[66] TPC. TPC-H Homepage. Available from: https://www.tpc.org/tpch/default5.

asp. 67

[67] TuGraph. TuGraph, 2022. Available from: https://www.tugraph.org. 8, 10, 12

[68] Abhishek Verma, Luis Pedrosa, Madhukar R. Korupolu, David Oppen-

heimer, Eric Tune, and John Wilkes. Large-scale cluster management at

Google with Borg. In Proceedings of the European Conference on Computer Systems

(EuroSys), Bordeaux, France, 2015. 72

[69] World Wide Web Consortium W3C. SPARQL 1.1 Overview, 2013. Available

from: https://www.w3.org/TR/2013/REC-sparql11-query-20130321/. 11

[70] Jack Waudby, Benjamin A. Steer, Karim Karimov, József Marton, Pe-

ter A. Boncz, and Gábor Szárnyas. Towards Testing ACID Compliance in

the LDBC Social Network Benchmark. In Raghunath Nambiar and Meikel

Poess, editors, Performance Evaluation and Benchmarking - 12th TPC Technology

Conference, TPCTC 2020, Tokyo, Japan, August 31, 2020, Revised Selected Papers,

12752 of Lecture Notes in Computer Science, pages 1–17. Springer, 2020. Available

from: https://doi.org/10.1007/978-3-030-84924-5_1. 28

[71] Jack Waudby, Benjamin A Steer, Arnau Prat-Pérez, and Gábor

Szárnyas. Supporting Dynamic Graphs and Temporal Entity Deletions

in the LDBC Social Network Benchmark’s Data Generator. In Proceedings

of the 3rd Joint International Workshop on Graph Data Management Experiences &

Systems (GRADES) and Network Data Analytics (NDA), pages 1–8, 2020. 3, 33

[72] Jim Webber. A Programmatic Introduction to Neo4j. In Proceedings of the

3rd Annual Conference on Systems, Programming, and Applications: Software for Hu-

manity, SPLASH ’12, page 217–218, New York, NY, USA, 2012. Association for Com-

puting Machinery. Available from: https://doi.org/10.1145/2384716.2384777. 9,

12

[73] Min Wu, Xinglu Yi, Hui Yu, Yu Liu, and Yujue Wang. Nebula Graph:

An open source distributed graph database. CoRR, abs/2206.07278, 2022.

Available from: https://doi.org/10.48550/arXiv.2206.07278. 1

103

https://www.tpc.org/tpcds/default5.asp
https://www.tpc.org/tpcds/default5.asp
https://www.tpc.org/tpch/default5.asp
https://www.tpc.org/tpch/default5.asp
https://www.tugraph.org
https://www.w3.org/TR/2013/REC-sparql11-query-20130321/
https://doi.org/10.1007/978-3-030-84924-5_1
https://doi.org/10.1145/2384716.2384777
https://doi.org/10.48550/arXiv.2206.07278

REFERENCES

104

Appendix

105

REFERENCES

106

Appendix A

Short Read Generation

Read query S1 S2 S3 S4 S5 S6 S7
Q1 ⊗ ⊗ ⊗
Q2 ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗
Q3 ⊗ ⊗ ⊗
Q7 ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗
Q8 ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗
Q9 ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗
Q10 ⊗ ⊗ ⊗
Q11 ⊗ ⊗ ⊗
Q12 ⊗ ⊗ ⊗
Q14 ⊗ ⊗ ⊗
IS2 ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗
IS3 ⊗ ⊗ ⊗
IS5 ⊗ ⊗ ⊗
IS6 ⊗ ⊗ ⊗
IS7 ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗

Table A.1: Short read queries executed after read query

107

A. SHORT READ GENERATION

108

Appendix B

Parameter Curation Factor Table
Selection

Query 6

Given a start Person with ID $personId and a Tag with name $tagName, find

the other Tags that occur together with this Tag on Posts that were created by

start Person’s friends and friends of friends (excluding start Person). Return

top 10 Tags, and the count of Posts that were created by these Persons, which

contain both this Tag and the given Tag (1)

Figure B.1: Pattern of LDBC SNB Interactive Complex Read 6

For Query 6 (Figure B.1), each $personId, we want a similar amount of friends of friends

and $tagNames. We therefore select from the personNumFriendsOfFriendsOfFriends

factor table person IDs with similar number of friends of friends. For the tag names, we

109

B. PARAMETER CURATION FACTOR TABLE SELECTION

use the tagNumPersons factor table, which contains for each tag their frequency in the

graph. We select tags with similar frequencies.

Query 7

Given a start Person with ID $personId, find the most recent likes on any of

start Person’s Messages. Find Persons that liked (likes edge) any of start Per-

son’s Messages, the Messages they liked most recently, the creation date of that

like, and the latency in minutes (minutesLatency) between creation of Messages

and like. Additionally, for each Person found return a flag indicating (isNew)

whether the liker is a friend of start Person. In case that a Person liked multiple

Messages at the same time, return the Message with lowest identifier. (1)

Figure B.2: Pattern of LDBC SNB Interactive Complex Read 7

For Query 7 (Figure B.2) we need to select persons with similar amount of direct friend-

ships from the personNumFriends table. While there is a factor table with statistics how

many likes a person has received, we opted not to use this table for two reasons: 1) the

frequency only gives us information during the whole simulation window, 2) giving likes

to a post or comment in the benchmark is one of the most frequent update operations,

therefore frequency given in the factor table can be too inaccurate to use.

110

Query 8

Given a start Person with ID $personId, find the most recent Comments that

are replies to Messages of the start Person. Only consider direct (single-hop)

replies, not the transitive (multi-hop) ones. Return the reply Comments, and

the Person that created each reply Comment. (1)

Figure B.3: Pattern of LDBC SNB Interactive Complex Read 8

For Query 8 (Figure B.3), we select the number of direct comments a person has using the

personNumFriendComments factor table.

Query 9

Given a start Person with ID $personId, find the most recent Messages created

by that Person’s friends or friends of friends (excluding the start Person). Only

consider Messages created before the given $maxDate (excluding that day). (1)

Figure B.4: Pattern of LDBC SNB Interactive Complex Read 9

111

B. PARAMETER CURATION FACTOR TABLE SELECTION

For Query 9 (Figure B.4), we select the person Ids using the numFriendsOfFriends. To

select a suitable $maxDate, we use the information from the creationDayNumMessages that

gives us a date with the number of messages available in the network.

Query 10

Given a start Person with ID $personId, find that Person’s friends of friends

(foaf) - excluding the start Person and his/her immediate friends -, who were

born on or after the 21st of a given $month (in any year) and before the 22nd

of the following month. Calculate the similarity between each friend and the

start person. (1)

Figure B.5: Pattern of LDBC SNB Interactive Complex Read 10

For Query 10 (Figure B.5), we select the person IDs from the personNumFriendOfFriends

factor table to select similar friend of friends frequencies. To select a month, we generate

a series of numbers in the range 1 to 12.

112

Query 11

Given a start Person with ID $personId, find that Person’s friends and friends

of friends (excluding start Person) who started working in some Company in a

given Country with name $countryName, before a given date ($workFromYear). (1)

Figure B.6: Pattern of LDBC SNB Interactive Complex Read 11

For Query 11 (Figure B.6), we need the number of friends and friend of friends from

the numFriendsOfFriends factor table, together with selecting a country name from the

countryNumPersons. The year is generated, giving a range from 1998 until 2013 (end of

the benchmark simulation window).

113

B. PARAMETER CURATION FACTOR TABLE SELECTION

Query 12

Given a start Person with ID $personId, find the Comments that this Person’s

friends made in reply to Posts, considering only those Comments that are direct

(single-hop) replies to Posts, not the transitive (multi-hop) ones. Only consider

Posts with a Tag in a given TagClass with name $tagClassName or in a de-

scendent of that TagClass. Count the number of these reply Comments, and

collect the Tags that were attached to the Posts they replied to, but only collect

Tags with the given TagClass or with a descendant of that TagClass. Return

Persons with at least one reply, the reply count, and the collection of Tags. (1)

Figure B.7: Pattern of LDBC SNB Interactive Complex Read 12

For Query 12 (Figure B.7) we select the number of direct friends from the personNumFriends

table. The tagClassName is selected from the tagClassNumTags table, which gives the fre-

quency per tagClassName.

114

Appendix C

Parameter Selection

Selecting Windows

In this example, we find a window of personIds with a number of friends of friends close

to each other in cardinality. We use the personNumFriendsOfFriendsOfFriends factor

table from SF10. The figures are limited in the x and y axis for simplicity. First, we sort

the factor table on the number of friends of friends to see the distribution. The result is

shown in Figure C.1. Second, of the sorted column we take the difference between the

neighbors and group the person IDs with a difference below a specified threshold. The

resulting groups are shown in Figure C.2. Lastly, we select the window with a minimum

number of person IDs, in this example 25, and then select the window with the smallest

standard deviation. The result is shown in Figure C.3.

115

C. PARAMETER SELECTION

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
Index of person IDs

0

2000

4000

6000

8000

10000

12000

14000

Nu
m

be
r o

f f
rie

nd
s o

f f
rie

nd
s

Number of friends of friends per person ID

Figure C.1: Distribution of the number of friends of friends per person ID.

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
Index of person IDs

0

2000

4000

6000

8000

10000

12000

14000

Nu
m

be
r o

f f
rie

nd
s o

f f
rie

nd
s

Identified windows in the person num friends of friends

Figure C.2: Grouped person IDs in the distribution of number of friends of friends

116

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
Index of person IDs

0

2000

4000

6000

8000

10000

12000

14000

Nu
m

be
r o

f f
rie

nd
s o

f f
rie

nd
s

Number of friends of friends per person ID
Selected PersonID

Figure C.3: Selected window of person IDs in the distribution of number of friends of friends

117

C. PARAMETER SELECTION

118

Appendix D

Parameter Curation Query 1
Example

This is a query that uses the parameters that are preselected using window functions and

selects the ones that are valid for a given day. We then take the cartesian product between

the personIDs and firstNames.

1 SELECT personId AS 'personId ',
2 firstName AS 'firstName ',
3 useFrom AS 'useFrom ',
4 useUntil AS 'useUntil '
5 FROM
6 (
7 SELECT Person1Id AS personId ,
8 creationDate AS useFrom ,
9 deletionDate AS useUntil

10 FROM personNumFriendsOfFriendsOfFriendsSelected
11 WHERE deletionDate - INTERVAL 1 DAY > :date_limit_filter
12 AND creationDate + INTERVAL 1 DAY < :date_limit_filter
13 ORDER BY md5(Person1Id)
14 LIMIT 50
15),
16 (
17 SELECT firstName ,
18 FROM personFirstNamesSelected
19 ORDER BY md5(Person1Id)
20 LIMIT 20
21)
22 ORDER BY md5(concat(personId , firstName , useUntil , useFrom))
23 LIMIT 500

Listing D.1: Example of daily parameter selection for Query 1.

119

D. PARAMETER CURATION QUERY 1 EXAMPLE

120

Appendix E

Scaling the Data sets to SF30,000

To scale up the driver, the Spark Datagen should generate larger scale factors whose sizes

are determined by the following definition: the scale factors denote the size of the generated

CSV files in GiB, e.g., the SF10 datase consists of approximately 10 GiB of CSV files. At

the beginning of this thesis work, the Spark Datagen was already capable of producing

large graphs with billions of edges but its scale factors were not yet precisely calibrated

to ensure that the size of the generated datases conform to this rule. Datagen takes the

number of persons in a graph as input parameter for each scale factor. To approximate

the amount of persons in the graph for scale factors 3,000 and up, we used polynomial

interpolation. As input parameters, the known number of persons per scale factor (up to

SF300) is given, shown in Table E.1.

SF 1 3 10 30 100 300 1,000 3,000 10,000 30,000

numPerson 10,620 25,870 70,800 175,950 487,700 1,230,500 3,505,000 9,232,000 27,200,000 77,000,000

Table E.1: Number of persons in the graph for a given scale factor.

Npersons = 7.522 ⋅ 10−13x−3.363 ⋅ 10−8x2+3.729 ⋅ 10−4−1.289x3+4.425 ⋅ 103x4+2.638 ⋅ 104x5

(E.1)

The prediction, based on the known values up to SF300, is done using a 5th-degree

polynomial. The result is a polynomial approximating the number of persons in the graph,

shown in Equation E.1. This formula was used to approximate the number of persons for

scale factors 1,000 to 30,000.

121

E. SCALING THE DATA SETS TO SF30,000

122

Changelog

Driver

• Added scale factor frequencies to the driver, users can now select the scale factor

within the client properties file instead of providing the query frequencies and update

interleaves

• Refactored validation parameter serialization to include query name

• Moved from CSV reader to Parquet based loader using DuckDB

• Refactored substitution parameter and update streams readers to use a single class

• Integrated support for temporal substitution parameters in operation handlers

• Merged read and write threads to use a threadpool instead of separate threads for

writes

• Integrated batched update stream reader with batch size parameter to minimize

memory usage when using larger scale factors

• Changed scheduled validation rule from a maximum of 10 late operations per query

to 5% per query

• Upgraded libraries and driver from Java 8 to Java 11

• Added variants for queries 3, 13, and 14

• Refactored test classes to split long running tests into smaller ones to enable more

granular testing

• Upgraded JUnit 4 to JUnit (Jupiter) 5

• Parallelized testing in CI/CD pipeline and in JUnit

123

E. SCALING THE DATA SETS TO SF30,000

• Created Python script that uses DuckDB and SQL to generate update streams with

dependency time

• Added temporal parameter curation script and SQL parameter generation query

templates

• Added temporal path curation script using networkit to replace people4Hops factor

table

Implementations

• Added reference implementation for SQL Server

• Add delete query skeletons in the Java client code to all reference implementations

• Fixed connection pooling for Postgres, Umbra and SQL Server by using HikariCP

• Moved QueryStore class to common project to generalize query building for imple-

mentations

• Added docker container loaders for Postgres, Umbra and SQL Server together with

docker-compose SUT setup

• Update Postgres loader from psycopg2 to ppsycopg3

124

	List of Figures
	List of Tables
	1 Introduction
	1.1 Context
	1.2 Research Questions
	1.3 Thesis Structure

	2 Background
	2.1 Benchmarking Database Management Systems
	2.2 Graph Data Models
	2.2.1 Labeled Property Graph Model
	2.2.2 Resource Description Framework (RDF)

	2.3 Graph Query Languages
	2.3.1 Cypher
	2.3.2 SQL/PGQ
	2.3.3 GQL
	2.3.4 Gremlin
	2.3.5 SPARQL

	2.4 DBMSs Supporting Graph Workloads
	2.4.1 TuGraph
	2.4.2 Neo4j
	2.4.3 Umbra
	2.4.4 PostgreSQL
	2.4.5 Microsoft SQL Server

	2.5 Scalability
	2.6 The LDBC Social Network Benchmark
	2.6.1 Data and Data Generator (Datagen)
	2.6.2 Choke Points
	2.6.3 Query Templates
	2.6.4 Parameter Curation
	2.6.5 Operations in the Interactive Workload
	2.6.5.1 Tracking Dependencies
	2.6.5.2 Workload Creation
	2.6.5.3 Benchmark Execution
	2.6.5.4 Cross-Validation

	2.6.6 Implementation
	2.6.7 ACID Compliance

	I SNB Interactive v2.0
	3 Design & Implementation
	3.1 Overview
	3.2 Migrating the Driver from the Hadoop Datagen to the Spark Datagen
	3.2.1 Creating the Dependent Time Column
	3.2.2 Exporting Update Streams

	3.3 Time-Aware Scalable Parameter Curation
	3.3.1 Selecting Factor Tables
	3.3.2 Parameter Selection
	3.3.3 Path Curation

	3.4 Updating the Driver
	3.5 Updating the Reference Implementations
	3.6 SQL Server Reference Implementation

	4 Evaluation of Interactive v2.0
	4.1 Experimental Setup
	4.2 Experiments for Tuning SNB Interactive v2
	4.2.1 Characterization of the Hadoop and Spark Datagen's Data Sets
	4.2.2 Parameter Curation
	4.2.3 Path Curation

	4.3 Effect of Deletes

	5 Related Work on Database Benchmarks
	5.1 LDBC SNB Business Intelligence (BI)
	5.2 LDBC Graphalytics
	5.3 LSQB: Large-Scale Subgraph Query Benchmark
	5.4 LinkBench
	5.5 GDB-test
	5.6 TPC (Transaction Processing Performance Council)
	5.6.1 TPC-C
	5.6.2 TPC-H
	5.6.3 TPC-DS

	5.7 YCSB

	II Distributed Driver Design
	6 Tools for Distributed Benchmarking
	6.1 Cloud Native Compute Foundation
	6.2 Distributed Frameworks
	6.2.1 Kubernetes
	6.2.2 Akka.io
	6.2.3 Message Passing Interface (MPI)

	7 Blueprint for a Distributed Benchmark Framework
	7.1 Distributing the Benchmark Workload
	7.2 System Design
	7.2.1 Logging & Observability
	7.2.2 Communication
	7.2.3 Deployment

	8 Evaluation of Partitioning Strategies
	8.1 Complex Read Partitioning

	9 Related Work on Distributed Benchmark Frameworks
	9.1 Orchestrating DBMS Benchmarking in the Cloud with Kubernetes
	9.2 Reproducible Benchmarking of Cloud-Native Applications with the Kubernetes Operator Pattern
	9.3 Is It Safe To Dockerize My Benchmark?
	9.4 DIAMetrics
	9.5 PEEL

	10 Future Work
	11 Conclusion
	References
	A Short Read Generation
	B Parameter Curation Factor Table Selection
	C Parameter Selection
	D Parameter Curation Query 1 Example
	E Scaling the Data sets to SF30000

