Dredev 2023-11-09

DuckDB

Harnessing in-process analytics
for data science and beyond

Gabor Szarnyas
Developer Relations Advocate

O DuckDB Labs

About me

Gabor Szarnyas
e 2014-2023: PhD + postdoc
 Research: benchmarks, graph processing

DuckDB Labs
e Startup with =18 people
» Based in Amsterdam DuckDB Labs

https://szarnyasg.github.io/
https://duckdblabs.com/

Context

DHH &
@dhh

@

The fact that mainstream developer laptops
now ship with 16-core, 3Snm CPUs is one of
those THE PREMISE CHANGED fundamentals
[...].

Time to reconsider some fundamentals

of where things run, how, and when.

6:15 PM - Oct 31, 2023

New
&€ M3
MAX

16-core CPU

40-core GPU

48GB Unified Memory
1TB SSD Storage’

DuckDB is an analytical database system
built for powerful end-user devices

DuckDB's key properties

An analytical SQL database
Built to be portable and fast
Developed since 2018
Written in C++11

Open-source under the MIT license

o

In-process

Fast

Portable

®

Open-source

Deployment *
model

Client-server setup

Client application

import psycopg

con = psycopg.connect (
host="3.218.70.181",
user="your_user'",

password="your_password",

dbname="your_db"

)
con.execute("SELECT ...")

Connection setup
and authentication

<€ >
Client protocol

Bottleneck

Pay for,

configure,

operate

Database server

Client-server setup

Client application
import psycopg

con = psycopg.connect (
- 1329870181
user="admin",
password="admin",
dbname="your_db"

)

con.execute("SELECT ...

Impractical!

<€ >
Client protocol

Still a bottleneck

Database server

Run in a container, need to
configure, adjust ports, ...

In-process setup

import duckdb

Client application

duckdb.sql("SELECT ...")

No configuration
No authentication
No client protocol

In-process setup

Client application

import duckdb
duckdb.sql("SELECT ...")
for persistence

con = duckdb.connect("my.db")
con.sql("SELECT ...")

%the

~—
—
-—
I
-

No configuration
No authentication
No client protocol

Single-file format
containing all tables

Database systems

In-process

Client-server

%the

MyR

PostgreSQOL

Transactional

o

DuckDB

VERTICA

Analytical

Portable

Installing DuckDB

You can get started with DuckDB in <15 seconds on most popular platforms

This includes:

e Typing the commands

 Downloading the packages from the internet
e Launching DuckDB

macOS: Python package Windows: R package ‘

. q Console Terminal Background Jobs !
- ev. %
R R432 - ~/

> |

...and more

P 0ip install duckdb ﬂ\i@dﬁ' npm install duckdb
R install.packages("duckdb") <> org.duckdb:duckdb_jdbc
<

Pkg.add("DuckDB")

A

@ cargo add duckdb

Why Is installation so fast?

DuckDB has zero external dependencies | -
Dependencies are vendored in the codebase

Pure C/C++ codebase

Portable anywhere with a C++11 compiler

Small binary packages

>

third_party

catch
concurrentqueue
fast_float
fastpforlib

fmt

fsst

httplib
hyperloglog
imdb
jaro_winkler

libpg_query

mbedtls

miniz
parquet
PCg

re2
snappy
snowball
tdigest
thrift/thrift
tpce-tool
utf8proc

zstd

WebAssembly (Wasm)

C @ shell.duckdb.org

duckdb> SELECT avg(temp_hi) AS avg_hi_temp
...> FROM weather

...> LEFT OUTER JOIN cities ON weather.city = cities.name;
.

avg_hi_temp

Elapsed: 24 ms

Fast

CSV reader performance @

Test data: LDBC social network data set Setup: M2Pro CPU, 32GB RAM, DuckDB v0.9.1

3.4 GB 3.2s 1GB

35 GB 27's 10 GB

~3.95X compression
360 GB 4 minod4s 104 GB

>1.2 GB/s for reading CSV,
parsing, and writing to DuckDB

Demo

Internals cﬁ

Storage

time

row-based

id content

length

time

column-based

id content

length

Storage

row-based column-based

id content length time id content length

Storage

row-based column-based

time id content length time id content length

Execution

row-based column-based

time id content length time id content length

tuple-at-a-time column-at-a-time

id content length id content length

Execution

row-based column-based

time id content length time id content length

tuple-at-a-time column-at-a-time vectorized

time id content length time id content length time id content length

Vectorized execution

thread 1
vectorized L1 cache

time id content length

thread 2
L1 cache

Vectorized execution

thread 1

vectorized L1 cache

time id content length

thread 2

L1 cache

Vectorized execution

thread 1

vectorized L1 cache

time id content length

thread 2

L1 cache

Vectorized execution

thread 1
vectorized

L1 cache

time id content length

thread 2

L1 cache

Indexing: Zone maps

For each column, DuckDB creates zone maps (a.k.a. min-max indexes)

min max
Nov 7 Nov 8
min max
Nov8 | Nov12

time

Nov 7

Nov 7

Nov 8

Nov 8

Nov 8
Nov 9
Nov 11

Nov 11

id

content

length
74
109 min max
67 63 109
63
95
113 min max
14 8 95

Indexing with the Adaptive Radix Tree (ART)

DuckDB supports secondary indexes:
o Implicit iIndexes - primary key, foreign key, unigue
o explicit indexes — CREATE [UNIQUE] INDEX

Tradeoffs:
e speed-up for high selectivity lookups
e negative performance impact for updates

Rule of thumb:
Most of the time indexes are not needed

Larger-than-memory execution: Joins and aggregations ‘

Larger-than-memory execution me(s)
e Graceful degradation 14
o Always try to finish

10.5
Example:
e TPC-H SF100 f
e Query7
3.5
0

24 22 20 18 16 14 12 10 8 6 4 2

memory limit (GB)

Feature-rich 0(

Input and output formats

. | oy

ﬁlpandas

CSV

O :

DUCKDB Ji™ Polars

Parquet

JSON

db

Query language

PostgreSQL dialect:
SELECT *
_ FROM grades grades_parent
° Subquerles WHERE grade=
. : (SELECT MIN(grade)
o Window functions M grades

WHERE grades.course=grades_parent.course)

e« Common table extensions

e Lateral j0IN
ateral joins SELECT "Plant", "Date",

« Range joins AVG("MWh") OVER (
. PARTITION BY "Plant"
» AsOf joins ORDER BY "Date" ASC

RANGE BETWEEN INTERVAL 3 DAYS PRECEDING
AND INTERVAL 3 DAYS FOLLOWING)
AS "MWh 7-day Moving Average"
FROM "Generation History"

"Friendly SQL" extensions ORDER BY 1, 2

e Pivoting and unpivoting tables

DuckDB SQL: FROM-first syntax

Common pattern:

SELECT =
FROM Comment:

Friendly variant:

FROM Comment;

DuckDB SQL: EXCLUDE columns

Common pattern:

SELECT
creationDate, 1d, locationIP, browserUsed, content,

length, CreatorPersonlId, LocationCountrylId
FROM Comment;

Friendly variant:

SELECT * EXCLUDE (ParentCommentId, ParentPostId)
FROM Comment;

DuckDB SQL: GROUP BY ALL

Common pattern:

SELECT month(creationDay), count(x) AS numComments
FROM Comment;

-=> Syntax error

Friendly variant:

SELECT month(creationDay), count(x) AS numComments
FROM Comment
GROUP BY ALL;

Extensions "

Data sources and destinations

PostgreSQL

s3://
DuckDB

gcs://

db

Extensions

e Powerful extension mechanism:
o new types and functions = READMEME

o data formats DuckDB Extension Template «
o operators

This repository contains a template for creating a DuckDB

O SQ L SyntaX extension. The main goal of this template is to allow users to
easily develop, test and distribute their own DuckDB
© memOry al |OCE\1IOI‘ extension. The main branch of the template is always based

on the latest stable DuckDB allowing you to try out your
extension right away.

e Many DuckDB features are |
Implemented as extensions Getting started «

O htt pfS First step to getting started is to create your own repo from
this template by clicking Use this template . Then clone

O JSO N your new repository using
o Parquet

glit clone —-recurse-submodules https://github (& 7.

https://github.com/duckdb/extension-template

Parquet + httpfs extensions to query stock data

SELECT avg(price)
FROM 'https://duckdb.org/data/prices.parquet’
WHERE ticker = 'MSFT';

avg(price)
double

2.0

It's not a full download:
e HT TP range requests so seek to the required data
e Only touch the ticker and price columns

Spatial extension

o Adds PostGIS-like functionality: geospatial types for points, polygons, etc.
o Adds functions for calculating distances

Example: aerial distance on the New York taxi data set

SELECT
st _point(pickup_latitude, pickup_longitude) as pickup_point,
st _point(dropoff_latitude, dropoff_longitude) as dropoff_point,
dropoff_datetime:: TIMESTAMP - pickup_datetime::TIMESTAMP AS time,

trip_distance,

st distance(
st _transform(pickup_point, 'EPSG:4326', 'ESRI:102718'),

st_transform(dropoff_point, 'EPSG:4326', 'ESRI:102718')) / 5280 AS aerial_distance,
trip _distance - aerial_distance AS diff

FROM rides
WHERE diff > 0
ORDER BY diff DESC:

Dredev 2023-11-09

DuckDB

Harnessing in-process analytics
for data science and beyond

Gabor Szarnyas
Developer Relations Advocate

O DuckDB Labs

Modernizing a graph algorithm benchmark o

R1

R2

Context:
Graph benchmark from 2015 (legacy codel)
Goal: find connected components quickly

Validation rule:
The result encode equivalence classes (R1=R2)

Problem:
The validation became very slow for large graphs
(single-threaded Java code building hashmaps)

Modernizing a graph algorithm benchmark

"‘E szarnyasg commented on Aug 24, 2022 - edited v | Member

Wil fix #205.
We can use the DuckDB appender to populate the tables.

Current validation scripts are in:

o https://github.com/ldbc/ldbc_graphalytics/tree/master/graphalyti

cs-core/src/main/java/science/atlarge/graphalytics/validation

o https://github.com/ldbc/ldbc_graphalytics/tree/master/graphalyti

Cs-
core/src/main/java/science/atlarge/graphalytics/validation/rule

A lot of time is spent parsing the results back from CSVs to Java
data structures, this could also be improved by using DuckDB's

R2

+338 -457 IHER

Output validation using matching in SQL #271/

ndl VG g B szarnyasg merged 10 commits into main from output-validation-using-matching

L) Conversation © -0- Commits 10) Checks 1 Files changed 25

Reviewers

No reviews

Assignees

No one assigned

Labels

None yet

Projects

None yet

Milactnna

https://github.com/ldbc/ldbc_graphalytics/pull/217
https://github.com/ldbc/ldbc_graphalytics/pull/217

More benchmark framework use cases ‘

» Output validation Feature/fix operation stream loading #165
® LOadlng OperatIOn StreamS szarnyasg merged 19 commits into main from feature/fix-operation-stream-loading
¢ Query parameter generathn L) Conversation 0 -0- Commits 19 [F]l Checks o0 Files changed 102

 Reading input parameters .
ﬁ GLaDAP commented on Jun 23, 2022 . edited ~ Member = °°° Reviewers
e Preprocessing raw data - [—
This PR contains the following:
®
Pa rtItIOn I ng u pdate St reams e QueryEventStreams are merged into 1 class Assignees
° Ana IyZ| ng resuy I-tS 8 Operr:-ltion streams arc? loaded using DuckDB No one assigned
e Queries moved to their own namespace
Labels
_ _ E+ GLaDAP added 19 commits last year None yet
None of this is a DB problem...
-O- A Move queries to separate namespace 5bf4581 ,
! Projects
-O- i Add DuckDb for CSV parsing 3c6f682 None yet

But they are bulky operations
on heavily structured data. +1,634 -5,270 EEER

https://github.com/ldbc/ldbc_snb_interactive_v1_driver/pull/165
https://github.com/ldbc/ldbc_snb_interactive_v1_driver/pull/165

Use cases

.

'
' Y N

7
=

Saving costs:
e Replacing (parts of) data warehouse jobs
« Running computation locally

Building block in applications:
e Just to perform a simple step
e E.g., converting from Parquet to CSV

Education:
o Easy-to-install, open, standards-compliant system
 No configuration, no DBA

Limitations

Concurrency control

o ACID compliance via multi-version concurrency control (MVCC)
« WAL (write-ahead log) for recovery
 Not a good fit for write-heavy transactional workloads

RW

Distributed execution @

DuckDB only supports single-node execution

Client application

DuckDB can scale up:

e r6id.32xlarge instances have 1TTB RAM for <$10/h
e x1e.32xlarge instances have 4TB RAM for =$28/h
Store the data in S3, run short bursts of workloads

Larger than memory execution allows scaling for TBs EEHHEEEEEEEEEEE

For tens of TBs, a distributed setup is beneficial

The DuckDB landscape

DuckDB versions

v0.9

v0.10

V1

.0

Current version

Early next year

Later next year

-
-
o

v1.0

Stable file format

Stability and maturity
Improvements

Performance
optimizations

Organizations around DuckDB

Q DuckDB €@ DuckDB Labs

MotherDuck

Wrapping up...

DuckDB is old-school with state of the art internals

Classic open-source project
Full-fledged CLI client

Works when you're offline DuckDB Documentation

DuckDB version 0.9.0
Generated on 2023-09-26 at 13:31 UTC

No vendor lock-In

EXPORT DATABASE 'my_db' (FORMAT CSV);
EXPORT DATABASE 'my_db' (FORMAT PARQUET);

o

https://duckdb.org/duckdb-docs.pdf

o

Give DuckDB a spin!

Google Colab, shell.duckdb.org

cO & DuckDB_in_Jupyter_Notebooks.ipynb < C' @ shell.duckdb.org

File Edit View Insert Runtime Tools Help Changes will not be saved

DuckDB Web Shell

+ Code + Text ¢> Copy to Drive Database: v0.9.1
Package: @duckdb/duckdb-wasm@1.27.1-dev134.0

~ Connecting to DuckDB

Q Connected to a local transient in-memory database.
Connect jupysql to DuckDB using a SQLAlchemy-style connection string. Enter .help for usage hints.
) duckdb> FROM 'https://
[1 %sql duckdb:///:memory: | |
- # %sql duckdb:///path/to/file.db ticker : when
2001-01-01 L
. 2001-01-01 2
~ Querying DuckDB 2001-071-01 .
2001-01-01 1
Single line SQL queries can be run using %sql at the start of a line. Quer 2001-01-01 2
highlighting! 2001-01-01 3
I] 2001-01-01 L
2001-01-01 2
[1 %sql SELECT 'Off and flying!' as a_duckdb_column 2001-01-01 3
a_duckdb_column ELEIPECRIE 4O IE
<>

0 Off and flying! duckdb> |

https://shell.duckdb.org/

Stay in touch

X &

discord.duckdb.org @duckdb duckdb.org

