A cross-technology benchmark
for incremental graph queries

Georg Hinkel, Antonio Garcia-Dominguez, René Schone, Artur Boronat,
Massimo Tisi, Théo Le Calvar, Frederic Jouault, Jozsef Marton, Tamas Nyiri,
Janos Benjamin Antal, Marton Elekes, Gabor Szarnyas

Presenter: Gabor Szarnyas (CWI Amsterdam)

Software and Systems Modeling 2022 | MODELS 2022 J1 track

TTC 2018 “Social media” case

News Your solutions ~ Programme Calls~ Aims and scope People History ~

11th Transformation Tool Contest

A contest for users and developers of transformation tools.

Part of the Software Technologies: Applications and Foundations (STAF) federated
conferences.

Hosted at the IRIT in Toulouse, France on Friday 29 June 2018.

https://www.transformation-tool-contest.eu/2018/

“Social media” case

Social network graph

Score posts and comments

(oLEL - New entities are inserted

Keep query results up-to-date

Scoring posts

Score = 10 x #comments + #likes

Score: 23 Seorer22
Score: 32

Scoring comments

For each comment, find connected components
of users who liked the comment

Score = X (component size)?

replyOf friends

Scoring comments

Score =X (component size)?=12+12=2

Scoring comments

Score =X (component size)?=12+12=2

Scoring comments

Score =X (component size)?=32=9

————————————————

Solutions

Solution

Data model | Variants

Active Operations Framework |EMF T

ATL EMF 2

Hawk EMF 3

JastAdd EMF Most solutions use the

Xtend Y|4 Eclipse Modeling Framework

YAMTL EMF| 3

NMF NMF 2

Differential Dataflow relational 1
21 solutions in total

PostgreSQL relational 2

Neo4j graph 2

GraphBLAS matrix i

Non-incremental query formulation

Examples of the how the initial query evaluation is formulated in:

e NMF
e Neo4j
e PostgreSQL

Note: Implementations can be quite complex - thisis a “programming contest”

Scoring posts

Score = 10 x #comments + #likes

Traversing the Submission tree

NMF NI

post.Descendants()

Neo4j (Cypher) -Neodj

MATCH (p:Post)
OPTIONAL MATCH (p)<-[:REPLY_OF*]-(c:Comment)

PostgreSQL (SQL:1999)

WITH RECURSIVE
comments_with_ancestors(id, ancestorid) AS (
SELECT c.id, c.parentid AS ancestorid
FROM comments c
UNION
SELECT cr.id, c.parentid AS ancestorid

FROM comments_with_ancestors cr
, comments c
WHERE cr.ancestorid = c.id)

f\J[V][F NME: Tarjan’s algorithm
Scorlng COmmentS let layering = Layering<IUser>.Createlayers(

comment.LikedBy,

Score=J (component size)z u => u.Friends. ?nter‘sect(comment .LikedBy))
let score = layering.Sum(1l => Square(l.Count))

Finding connected components of Users

,neoqj Neo4j: User-defined function

MATCH (c:Comment) WHERE (c)<-[:LIKES]-(:User)
CALL gds.wcc.stream({
nodeQuery:
"MATCH (c:Comment)<-[:LIKES]-(u:User)
WHERE id(c)=" + id(c) + "
RETURN id(u) AS id",
relationshipQuery:
"MATCH (ul:User)<-[:FRIENDS]->(u2:User)
RETURN id(ul) AS source, id(u2) AS target”,
validateRelationships: false

})
YIELD componentId

Scoring comments

Score = X (component size)?

Finding connected components of Users

PostgreSOQL: Simplified SOL query

WITH RECUR

SIVE

comment_friends(commentid, userlid, user2id) AS (...),
comment_friends_closed(commentid, head_userid, tail_userid) AS

SELECT

B

1.commentid
l.userid AS head_userid, 1l.userid AS tail_userid

FROM likes 1

UNION
SELECT

cfc.commentid, cfc.head_userid, f.user2id AS tail_userid

FROM comment_friends_closed cfc, comment_friends f

WHERE

cfc.tail_userid = f.userlid

AND cfc.commentid = f.commentid
), comment_components AS (

SELECT

)

commentid, head_userid AS userid
min(tail_userid) AS componentid

FROM comment_friends_closed

GROUP

BY commentid, head_userid

), comment_component_sizes AS (

SELECT

cc.commentid, cc.componentid, count(*) AS component_size

FROM comment_components cc

GROUP

)
SELECT c.i
, coa
FROM com
LEFT JOI
GROUP BY

BY cc.commentid, cc.componentid

d AS commentid

lesce(sum(power(ccs.component_size, 2)), @) AS score
ments ¢

N comment_component_sizes ccs ON (ccs.commentid = c.id)
c.id, c.ts

Incremental maintenance

initial query (1) full
evaluation recomputation
(2) incremental maintenance
Query(M) ~ Query(M')

A

(2a) explicit incremental maintenance T

+AQuery(M, AM, auxl,...)
7/

(2b) implicit incremental maintenance /

Data Explicitly Implicitly

Solution

model incremental | incremental
Xtend EMF - -
Hawk EMF + =
PostgreSQL relational + =
Neo4| graph + -
GraphBLAS matrix + =
Active Operations Framework | EMF = +
ATL EMF - +
JastAdd EMF - +
NMF NMF - +
Differential Dataflow relational - +
YAMTL EMF + +

Scoring comments Incremental evaluation

— 1 2
Score = Z (component size) The granularity of the incremental

Finding connected components of Users maintenance has a big effect on performance:

e New “likes” edge > recalculate only for the
the affected single comment

e New “knows” edges - recalculate for each
affected comments

e Reusing existing connected components?

.

2

w

N oo

8

Listing 36 Initialization phase for the Incremental PostgreSQL solution

INSERT INTO comment_friends (status,

commentid, userlid, user2id)
SELECT 'B' AS status
, 1ll.commentid, f.userlid,
f.user2id
FROM likes 11, likes 12
, friends £
WHERE 11.userid = f.userlid
AND f.user2id = 12.userid
AND 11.commentid = 12.commentid;

for Q2, initializing the comment_friends relation.

1 INSERT INTO comment_friends (status,

w

P OowL®o U

PP

12
13
14
15,
16
17
18
19

20
21
22
23
24

commentid, userlid, user2id)
SELECT 'D' AS status
, ll.commentid, f.userlid,
f.user2id
FROM likes_d 11, likes 12
, friends £
WHERE 11.userid = f.userlid
AND f.user2id = 1l2.userid
AND 1ll.commentid = 12.commentid
UNION ALL
SELECT 'D' AS status
, 11.commentid, f.userlid,
f.user2id
FROM likes_b 11, likes 12
, friends_d £
WHERE 11.userid = f.userlid
AND f.user2id = 12.userid
AND 1ll.commentid = 12.commentid
UNION ALL
SELECT 'D' AS status
, 11.commentid, f.userlid,
f.user2id
FROM likes_b 11, likes_d 12
, friends_b f
WHERE 11.userid = f.userlid
AND f.user2id = 12.userid
AND 11.commentid = 12.commentid;

Listing 37 SQL maintenance phase for the Incremental PostgreSQL
solution for Q2: updating the comment_friends relation.

1

4

11

12

14

15
16
L7
18
19

20

21
22

23

WITH RECURSIVE

comment_friends_closed_init(
commentid, head_userid,
tail_userid) AsS (

-- transitive closure
(reachability-only,
recorded)

-- of friendship-subgraphs defined by
comment likes

no path is

-- start with the users that liked
a specific comment.

-- They are the nodes of the
projected users graph for a
comment

SELECT 1l.commentid, l.userid AsS
head_userid, l.userid As
tail_userid

FROM likes 1
UNION

-- expand the closure with the
edges of the projected
graph,

-- which is stored in
comment_friends table

SELECT cfc.commentid,
cfc.head_userid, f.user2id
as tail_userid

FROM comment_friends_closed_init
&fe
, comment_friends £
WHERE cfc.tail_userid = f.userlid
AND cfc.commentid = f.commentid

)

INSERT INTO
comment_friends_closed(commentid,
head_userid, tail_userid)

select commentid, head_userid,
tail_userid

from comment_friends_closed_init w
left join
comment_friends_closed
g using (commentid,
head_userid,
tail_userid)
where g.commentid IS NULL;

Listing 38 SQL initialization phase for the Incremental PostgreSQL
solution for Q2: initializing the comment_friends relation’s closure.

1 WITH comment_components AS (
2 SELECT commentid, head_userid aAs
userid
3 , min(tail_userid) AsS
componentid
FROM comment_friends_closed
GROUP BY commentid, head_userid

, comment_component_sizes AS (

SELECT cc.commentid,
cc.componentid, count(*) AS
component_size

4
5
6)
7
8

9 FROM comment_components cc

10 GROUP BY cc.commentid,
cc.componentid

1.)

12 -- consider all comments including

those without likes
13 SELECT c.id AS commentid
14 , coalesce(sum(
power (ccs.component_size,
2)), 0) AS score
15 FROM comments c left join
comment_component_sizes ccs
on (ccs.commentid = c.id)
16 GROUP BY c.id, c.ts
17 ORDER BY sum(
power (ccs.component_size, 2))
DESC NULLS LAST

18 , C.ts DESC LIMIT 3;

Listing 40 SQL result retrieval phase for the Incremental PostgreSQL
solution for Q2.

RN =

o u

[CRCEN]

WITH RECURSIVE -- note: though not the 1lst query is
the recursive one, the RECURSIVE keyword
needs to be at the beginning

comment_friends_closed_stage0d AS (

-- in order to maintain the transitive closure in
comment_friends_closed

-- we build on the transitive closure built so
far and the new likes.

-- We need the new likes because users that liked
a specific comment

-- are the nodes of the projected users graph for
a comment

SELECT commentid, head_userid, tail_ userid

FROM comment_friends_closed
UNION ALL

31
32
33

34

SELECT 1.commentid, l.userid AS head_userid,
l.userid AS tail userid
FROM likes_d 1
)
, comment_friends_closed_stagel (commentid,
head_userid, tail userid) AS (
-- the transitive closure computed so far
(reachability-only, no path is recorded)
-- is expanded by paths built from the new friendships
SELECT commentid, head userid, tail_ userid
FROM comment_friends_closed_stage0
UNION
SELECT cfc.commentid, cfc.head userid, f.user2id
as tail userid
FROM comment_friends_closed_stagel cfc
, comment_friends_d f
WHERE cfc.tail userid = f.userlid
AND cfc.commentid = f.commentid
)
, comment_friends_closed_stage2 AS (
-- transitive closure having the new friendships is
then expanded using the
-- previous transitive closure stage
SELECT distinct cfc.commentid, cfc.head userid,
r.tail_userid
FROM comment_friends_closed_stagel cfc
inner join comment_friends_closed r on
(cfc.tail userid =
r.head_userid AND
cfc.commentid = r.commentid)
-- LEFT JOIN and WHERE ... IS NULL is
the antijoin
-- used to eliminate edges already

present in the previous closure
-- this is to prevent unnecessary
CONFLICTs in the INSERT
statement below.
left join comment_friends_closed s0 on
(cfc.commentid = s0.commentid
AND cfc.head_userid =
s0.head_userid AND
cfc.tail userid =
s0.tail_userid)
WHERE s0.commentid IS NULL
UNION
SELECT commentid, head userid, tail userid
FROM comment_friends_closed_stagel
)
INSERT INTO comment_friends_closed (commentid,
head_userid, tail userid)
select commentid, head userid, tail userid
from comment_friends_closed_stage2 w
left join comment_friends_closed g using
(commentid, head userid,
tail userid)
where q.commentid IS NULL
ON CONFLICT DO NOTHING;

Listing 39 SQL maintenance phase for the Incremental PostgreSQL
solution for Q2: updating the comment_friends relation’s closure.

Results and findings

Execution time [s]

Scoring posts

100

R
- o

o
—

0.01

0.001

0.0001

1 2 4 8 16 32 64 1282565121024 1 2 4 8 16 32 64 1282565121024 1 2 4 8 16 32 64 128 256 5121024
Model size

- AOF ~£~ GraphBLAS Incremental —#- Neo4j Incremental -~ PostgreSQL Incremental

-8~ Differential Dataflow -8~ JastAdd Relast Reusable Incremental -~ NMF Incremental - YAMTL Incremental

Execution time [s]

SCO ri ng pOStS Combined runtime of applying

changes and re-evaluating the query

|
100
" If there is no timeout, these
phases are less important
3
0.1 ! I -
0.01 . =
1.3k nodes 860k nodes
0.001 2.5k edges 2.3M edges
0.0001 4] o~
i 2 4 8 16 32 64 1282565121024 1 2 4 8 16 32 64 128 256 512 1] PSRN L FNo) MV 7\ V Ry B
Model size ’ ? ?

Differential Dataflow) are

-#- AOF ~£~ GraphBLAS Incremental -2~ Neo4j Ind alllmpl|C|tly|ncremental

-5 Differential Dataflow -#- JastAdd Relast Reusable Incremental @ NMF Incremental - YAMTL Incremental

Execution time [s]

100

il
o

-—h

o
i

0.01 =

0.001

0.0001

Initial

Model size

-# AOF ~“~ GraphBLAS Incremental

-=- Differential Dataflow -#- JastAdd Relast Reusable Incremental

8 16 32 64 1282565121024 1 2 4 8 16 32 64 128 256 5121024 1

2 4 8 16 32 64 128 256 5121024

—#- Neo4j Incremental -e- PostgreSQL Incremental

-8 NMF Incremental

-~ YAMTL Incremental

Execution time [s]

100

10

0.1

0.01

0.001

0.0001

Neo4j times

out on SF1024 !
PostgreSQL times

Load Initial A outon SF512+

| 4. GraphBLAS is fast but
has limited granularity

2> = \ \ —

16 32 64 1282565121024 1 2 4 8 16 32 64 121024
Model size

8 16 32 64 128 256 5121024 1

N
~
(0]

Best tools (AOF, NMF, YAMTL,

W HEE A (EPRRILES [armenl MK Differential Dataflow) are again

-2~ Differential Dataflow -#- JastAdd Relast Reusable Incremental - NMF

implicitly incremental

Findings

1.

Implicitly incremental tools are superior

Lacklustre performance from databases

Parallelization is not supported by EMF tools and databases
User-defined functions are important

Fair benchmarking and reproducibility are challenging

The Linked Data Benchmark Council

LDBC®

The Linked Data Benchmark Council (LDBC) is a non-profit
organization founded in 2012 with members from academia and
industry. Its goals are:

1. Defining graph processing benchmarks
2. Facilitating fair competition
3. Accelerating the adoption of ISO GQL and SQL/PGQ

LDBC members

20 companies and organizations, including;

C

ANT aws ORACLE’
GROUP

intel >ﬂeO4j @ TigerGraph

LDBC benchmarks

Social Network Benchmark:

e Thedataofthe TTC 2018 “Social Media” case is a subset of the SNB.

The SNB has new and updated workloads:

e analytical: Business Intelligence workload v1
e transactional: Interactive workload v2

Rigorous auditing process that takes system costs (license and ownership) into account.

Conclusion

Conclusion

The TTC 2018 “Social Media” case:

e Across-technology benchmark
e forincremental graph queries

Findings:

Two simple graph queries can be challenging to formulate even non-incrementally
DBMSs have performance issues for graph queries

Explicit incremental evaluation is difficult

Implicit incremental tools are superior

> “retrofitted” incrementality has limited benefits

Finding: Lack of parallelization

Parallelization is paramount today: even laptop CPUs have 8-16 cores.
The initial evaluation is trivially parallelizable for both queries.

Observation:

e Only NMF, Differential Dataflow, and GraphBLAS support parallelization.
e EMF tools and databases (Neo4j, PostgreSQL) lack parallelization.

Finding: Importance of user-defined functions

Some computations are difficult to express in a declarative language, e.g. the
connected components algorithm

User-defined functions (UDFs) can be used to express these computations

e Common among EMF tools - Java/Xtend code operating on the EMF model
e Database systems like Spark/Databricks and Snowflake support Java UDFs

Incremental maintenance of UDFs is difficult

Finding: Fair benchmarking is difficult

We are comparing very different systems:

EMF tools

Neo4j - graph DBMS

PostgreSQL - relational DBMS

GraphBLAS - concurrent sparse linear algebra library written in C
Differential Dataflow - dataflow library written in Rust

Reproducibility is also difficult:

e dockerized execution
e extensive Cl tests
e benchmarking in standard cloud VMs

Limitations of the benchmark

Limitations
No delete operations
e Adding them to the data generator is difficult (GRADES-NDA’20 paper)

No (unweighted) shortest path queries

e Anotherimportant graph kernel, also challenging with deletes

See examples in the next slides.

Connected components with delete operations

Scoring comments

Score =X (component size)?=32=9

Connected components with delete operations

Scoring comments

Score =X (component size)?=12+1%2=2

Shortest paths with delete operations

u3
friends

Shortest paths with delete operations

Shortest path: [ul, u5, u4]

Shortest paths with delete operations

u2

u3
friends r//

Shortest path: ?

Shortest paths with delete operations

friends

O—0O—

Shortest path: [ul, u2, u3, u4]

Shortest paths with delete operations

friends

Shortest path: [ul, u2, u3, u4]
[ul, u2, ub, u4]

Ideas for incremental evaluation /7
Future work

Ideas for incremental evaluation

The ideas in the following slides could work if all inserts are added one-by-one and
there are not too many inserts. (There aren’t, see the table with the model sizes.)

lIRC none of the solutions in the paper used this: they all went for a bulk insertion
followed by a single recomputation step.

With a client-server setup, doing operations in bulk likely makes sense. Performing an
individual maintenance operation per insert is likely expensive. With a read-oriented
system (e.g. column store), it makes sense to perform the inserts in bulk.

Still, it would be interesting to give this a go with an embeddable database (e.g.

DuckDB, Neo4j) or a system which provides an option to write stored procedure (like
Oracle’s PL/SQL).

Scoring posts Trick: For each Comment, store its root

Post. When inserting a new child Comment,
Score = 10 x #comments + #likes it should get its parent’s root Post.

Traversing the Submission tree This works because the subgraph is a tree

and there are no cut-and-link operations.

onie: e, oo componente o _
“friends” edge, connected components can

only be merged together. Score = X (component size)?

This works because there are no delete Finding connected components of Users

operations.

onie: e, oo componente o _
“friends” edge, connected components can

only be merged together. Score = X (component size)?

This works because there are no delete Finding connected components of Users

operations.

Potential extensions to the slide deck

o—conereteresuttstides
o—detatts onSQLHPGO VHONFERE
o—moedelsizes

. | : Lot

e interesting findings
e more info on concrete tools
o mention of DD & videos

o mention of GraphBLAS
o Hawk, NMF, YAMTL, etc.

e anything on DuckDB/DuckPGQ as a potential tool for Q1

o—comptathrthrg-thatmostMbEtoolsaresingte-threaded
e incremental tricks explained...

Incremental query formulation

PK id bigint PK ‘td t’.‘g"‘tt
: | ts timestamp 5 Hmesiamp
parentid COREaAt tast parentid content text
FK submitterid bigint PO~ FK submitterid bigint
FK parentid bigint
commentid submitterid submitterid
=5 |
likes users userlid |
FK userid bigint 4 userid PK id bigint user2id
FK commentid bigint P name varchar <

friends

FK userlid bigint
FK user2id bigint

| FK userlid
FK user2id 1

I
I
-)

[o] o
rStatus char(i)} istatus char(1)i .
PKTdbigint [Postid |PKid bigint -pactd
parentid ts timestamp e ts timestamp I
content text SOPRAENTC] content text
FK submitterid bigint FK submitterid bigint
FK parentid bigint
FKpostid bigint |
commentld__ submitterid submitterid
\
likes users friends
{status char(1), [status char(1), userlidy d [status char(i))
FK userid bigint , userid | PKid bigint user2id |] FK userlid bigint
FK commentid biglntl’ 1 name varchar) N FK user2id bigint !
head
userid
[A Ztard Y (—— b
i comment_friends_closed | i q1_scoring 1
MNP TR g
—04 FK commentid bigint :FK postid bigint a—’—
i FK head_userid bigint bo_ i1 postts bigint |
| FK tail_userid bigint " “tail_ | score bigint !
f‘ """"""""""" L userd | | TTTTTTTTTTTTTTTTTTTTTT
i comment_friends])
S i userlid
commentid status char(1)
04 FK commentid bigint 'E - user2id

Incremental view maintenance

Categories:

e Non-incremental: query is recomputed each time

e Implicitly implemental: the maintenance is done automatically by the system

e Explicitly incremental: the query developer manually incrementalizes the query
(poor man’s view maintenance, can be retrofitted to existing systems)

Studied in depth in database research
...but most research focused on equijoins
...maybe anti- and outer joins

Transitive reachability (tree queries, connected components, etc.) are less studied.

Execution time [s]

Load Initial Update

l1lll

E

8 16 32 64 128 256 5121024 : 16 32 64 128 256 5121024
Model size

- AOF ~£~ GraphBLAS Incremental —#- Neo4j Incremental -~ PostgreSQL Incremental

-8~ Differential Dataflow -#- JastAdd Relast Reusable Incremental -~ NMF Incremental ¢ YAMTL Incremental

All tools

(1) AOF

(2) ATL (3) + Incremental

(4) Differential Dataflow

(5) GraphBLAS (6) + Incremental
(7) Hawk (8) + IU (9) + 1UQ

(10) JastAdd

(11) Neo4j (12) + Incremental
(13) NMF (14) + Incremental
(15) PostgreSQL (16) + Incremental
(17) Xtend

(18) YAMTL (19) + 1l (20) + EI

Most tools use the EMF data model

(1) Active Operations Framework (AOF)
(2) ATL (3) + Incremental
(7) Hawk (8) + IU (9) + IUQ
(10) JastAdd

(17) Xtend

(18) YAMTL (19) + 1 (20) + EI

NMF:
(13) NMF (14) + Incremental

Relational:
(4) Differential Dataflow
(15) PostgreSQL (16) + Incremental

Property graph:
(11) Neo4j (12) + Incremental

Matrix:
(5) GraphBLAS (6) + Incremental

Draft

a very small benchmark suite, just two queries and a few transformations

already highlights numerous usability and performance characteristics of systems !!
e.g. why don’t MDE tools use relational DBMSs

discuss the two queries briefly

present a few solutions (e.g. Postgres/SQL; Neo4j/Cypher; MDE tools; differential
dataflow, refer to Frank McSherry’s video)

FMS videos

Live coding differential dataflow:

e https://www.youtube.com/watch?v=W6TKxS pWr0
e https://www.youtube.com/watch?v=83rG471bmw8
e https://www.yvoutube.com/watch?v=uZ23MnpujNA

https://www.youtube.com/watch?v=W6TKxS_pWr0
https://www.youtube.com/watch?v=83rG471bmw8
https://www.youtube.com/watch?v=uZ23MnpujNA

Schema Instance

friends
likes
User
Tsu bmitter
replyOf
Submission [€

Post Comment

Differential dataflow: CC computation

likes // node label comment
.filter(|_| false)
.map(| (user, comm)| ((user.clone(), comm), user))
.iterate(|labels| {

let knows = knows.enter(&labels.scope());
let likes = likes.enter(&labels.scope());
labels

.map(|((node, comment), label)| (node, (label, comment)))
.join_map(&knows, | _node, (label, comment), dest| ((dest.clone(), comment.clone()), label.clone()))
.concat(&likes.map(| (user, comm)| ((user.clone(), comm), user)))
.reduce(|_key, input, output| {

// only produce output, if “input’ contains ~_key.0"

if input.iter().any(|(label, wgt)| *label == & key.0) {

output.push((input[@].0.clone(), 1));

}

})
1)

Table 2 Classification of approaches for Q2, sorted by tool and incrementality

Solution Incremental conn. components Algorithm Sorting
AOF ® Breadth-first traversal Incremental
ATL O Depth-first traversal Full

ATL incremental ® Breadth-first traversal Incremental
Differential Dataflow ® Fixed-point label propagation Full
GraphBLAS O FastSV Offline top-x
GraphBLAS incremental Q@ FastSV on overestimation + merge Online top-x
Hawk @) Tarjan Full

Hawk (IU) O Tarjan Full

Hawk (IUQ) @) Tarjan Online top-x
JastAdd %) Depth-first/Kosaraju Offline top-x
Neo4j O Union-find variant Offline top-x
Neo4j incremental ® Breadth-first traversal Incremental
NMF reference @) Tarjan Full

NMF incremental ® Edge changes Incremental
PostgreSQL O Breadth-first traversal Online top-x
PostgreSQL incremental %) Overestimation + breadth-first traversal Online top-x
Xtend O Tarjan Online top-x
YAMTL-B @) Weighted quick-union-find with path compression Online top-x
YAMTL-II ® Weighted quick-union-find with path compression Online top-x
YAMTL-EI ® Weighted quick-union-find with path compression Online top-x

Notation—@® yes; @ to some extent; O no. Overestimation means that all connected components are re-computed that might be affected by the

changes

Table 1 Classification of approaches for Q1, ordered by solution name

and support for incrementality

Solution Incrementality Sorting
AOF ® Incremental
ATL e} Full

ATL incremental ® Incremental
Differential Dataflow ® Full
GraphBLAS O Offline top-x
GraphBLAS incremental ® Offline top-x
Hawk Q@ Full

Hawk (IU) @ Full

Hawk (IUQ) Q Online top-x
JastAdd @ Offline top-x
Neod;j O Offline top-x
Neo4j incremental ® Incremental
NMF reference O Full

NMF incremental ® Incremental
PostgreSQL (@] Online top-x
PostgreSQL incremental ® Online top-x
Xtend ¢} Online top-x
YAMTL-B O Online top-x
YAMTL-II @ Online top-x
YAMTL-EI ® Online top-x

Notation: ® yes; @ to some extent; O no

Table4 Comparison of the tools used in the paper

Tool Version Data model Engine Solution Decl. Batch Implicit Explicit DB MV Parallel
AOF v201806 EMF Java 8 Xtend @ O ® O O O O
ATL 3.8.0 EMF Java 8 ATL ® ® @) O o) @) @)
ATL Incremental v201904 EMF Xtend ATL/AOF ® O ® @) O @) O
Differential Dataflow 0.11.0 relations Rust Rust O O ® O O O ®
GraphBLAS 4.0.3 matrices C C++ O ® O ® O O ®
Hawk 2.1.0 EMF Java 8 EOL %) ® %) ® ® @ O
JastAdd 2.3:5 EMF Javall Javall O ® ® O O O @)
Neo4j 4.2.4 property graph Java 11 Java 11 ® ® O ® ® ® ©)
NMF 2.0.169 NMF C# C# ® ® ® O O) ®
PostgreSQL 12.4 relations C Java11/SQL ® ® O ® ® ® O
Xtend 2.20.0 EMF Java 8 Xtend ® ®) O O O ®
YAMTL 0.1.5 EMF Java1ll Xtend %) ® ® ® O) @)

Data Model: the data model exposed to the user. Engine: programming language used to implement the engine (model transformation engine,
database query engine, etc.), Solution: programming language and query language (if applicable) used to implement the solution, Decl.: the solution
specified the queries using a declarative query language, Batch: only batch mode is supported, Implicit: implicit incrementalization is supported,
Explicit: a solution with explicit incrementalization was implemented, DB: database-backed, i.e. the tool persists the model on disk after each
transaction, MV: materialized views, Parallel: parallelization is supported. Notation—@® yes; @ to some extent; O no; ® yes, using Java 8 streams

Model sizes for each scale factor

Table 7 Model sizes for each scale factor: number of nodes and edges, number of changes

Type\scale factor 1 2 4 8 16 32 64 128 256 512 1024
Comments 640 1064 2315 5056 9220 18,872 39,212 76,735 148,470 273,418 540,905
Posts 554 889 1845 2270 5518 10,929 18,083 37,228 74,668 167,299 314,510
Users 80 118 190 204 394 595 781 1158 1678 2606 3699
Total number of nodes 1274 2071 4350 7530 15,132 30,396 58,076 115,121 224,816 443,323 859,114
friends 53 102 262 298 904 1827 2752 5695 11,118 24,387 45,386
replyTo 640 1064 2315 5056 9220 18,872 39,212 76,735 148,470 273,418 540,905
likes 6 24 66 129 572 1598 4770 13,374 36,815 102,276 268,432
submitter 1194 1953 4160 7326 14,738 29,801 57,295 113,963 223,138 440,717 855,415
Total number of edges 2533 4207 9118 17,865 34,654 70,970 143,241 286,502 568,011 1,114,216 2,251,043
Total number of changes 67 120 132 104 110 117 68 86 45 112 74

