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“Social media” case
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Solutions



Solution Data model Variants

Active Operations Framework EMF 1

ATL EMF 2

Hawk EMF 3

JastAdd EMF 2

Xtend EMF 1

YAMTL EMF 3

NMF NMF 2

Differential Dataflow relational 1

PostgreSQL relational 2

Neo4j graph 2

GraphBLAS matrix 2

21 solutions in total

Most solutions use the 
Eclipse Modeling Framework

DBMSs



Non-incremental query formulation 
Examples of the how the initial query evaluation is formulated in:

● NMF
● Neo4j
● PostgreSQL

Note: Implementations can be quite complex – this is a “programming contest”



NMF
post.Descendants()

Neo4j (Cypher)
MATCH (p:Post)

OPTIONAL MATCH (p)<-[:REPLY_OF*]-(c:Comment)

PostgreSQL (SQL:1999)
WITH RECURSIVE

  comments_with_ancestors(id, ancestorid) AS (

      SELECT c.id, c.parentid AS ancestorid

        FROM comments c

    UNION

      SELECT cr.id, c.parentid AS ancestorid

        FROM comments_with_ancestors cr

           , comments c

       WHERE cr.ancestorid = c.id)
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Traversing the Submission tree

Score = 10 × #comments + #likes



NMF: Tarjanʼs algorithm
let layering = Layering<IUser>.CreateLayers(
  comment.LikedBy,
  u => u.Friends.Intersect(comment.LikedBy))
let score = layering.Sum(l => Square(l.Count))

Neo4j: User-defined function
MATCH (c:Comment) WHERE (c)<-[:LIKES]-(:User)

CALL gds.wcc.stream({

  nodeQuery:

    "MATCH (c:Comment)<-[:LIKES]-(u:User)

     WHERE id(c)=" + id(c) + "

     RETURN id(u) AS id",

  relationshipQuery:

    "MATCH (u1:User)<-[:FRIENDS]->(u2:User)

     RETURN id(u1) AS source, id(u2) AS target", 

  validateRelationships: false

})

YIELD componentId

...

Scoring comments
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PostgreSQL: Simplified SQL query

WITH RECURSIVE
  comment_friends(commentid, user1id, user2id) AS ( ... ),
  comment_friends_closed(commentid, head_userid, tail_userid) AS
    SELECT l.commentid
         , l.userid AS head_userid, l.userid AS tail_userid
      FROM likes l
     UNION
    SELECT cfc.commentid, cfc.head_userid, f.user2id AS tail_userid
      FROM comment_friends_closed cfc, comment_friends f
     WHERE cfc.tail_userid = f.user1id
       AND cfc.commentid = f.commentid
), comment_components AS (
    SELECT commentid, head_userid AS userid
         , min(tail_userid) AS componentid
      FROM comment_friends_closed
     GROUP BY commentid, head_userid
), comment_component_sizes AS (
    SELECT cc.commentid, cc.componentid, count(*) AS component_size
      FROM comment_components cc
     GROUP BY cc.commentid, cc.componentid
)
SELECT c.id AS commentid
     , coalesce( sum( power(ccs.component_size, 2) ), 0) AS score
  FROM comments c
  LEFT JOIN comment_component_sizes ccs ON (ccs.commentid = c.id)
 GROUP BY c.id, c.ts
...
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Incremental maintenance



M M'=M+ΔM
+ΔM

Query(M) Query(M')

initial query 
evaluation

(1) full 
recomputation

(2a) explicit incremental maintenance
+ΔQuery(M, ΔM, aux1, …)

(2b) implicit incremental maintenance 🪄

(2) incremental maintenance



Solution Data 
model

Explicitly 
incremental

Implicitly 
incremental

Xtend EMF − −

Hawk EMF + −

PostgreSQL relational + −

Neo4j graph + −

GraphBLAS matrix + −

Active Operations Framework EMF − +

ATL EMF − +

JastAdd EMF − +

NMF NMF − +

Differential Dataflow relational − +

YAMTL EMF + +



Incremental evaluationScoring comments
The granularity of the incremental 
maintenance has a big effect on performance:

● New “likes” edge → recalculate only for the 
the affected single comment

● New “knows” edges → recalculate for each 
affected comments

● Reusing existing connected components?

Finding connected components of Users
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Scoring comments: SQL incremental



Results and findings



Scoring posts



Scoring posts Combined runtime of applying 
changes and re-evaluating the query

Best tools (AOF, NMF, YAMTL, 
Differential Dataflow) are
all implicitly incremental

If there is no timeout, these 
phases are less important

1.3k nodes
2.5k edges

860k nodes
2.3M edges



Scoring comments



Scoring comments Neo4j times 
out on SF1024

PostgreSQL times 
out on SF512+

Best tools (AOF, NMF, YAMTL, 
Differential Dataflow) are again 
implicitly incremental

GraphBLAS is fast but 
has limited granularity



Findings
1. Implicitly incremental tools are superior

2. Lacklustre performance from databases

3. Parallelization is not supported by EMF tools and databases

4. User-defined functions are important

5. Fair benchmarking and reproducibility are challenging



The Linked Data Benchmark Council



The Linked Data Benchmark Council (LDBC) is a non-profit 
organization founded in 2012 with members from academia and 
industry. Its goals are:

1. Defining graph processing benchmarks
2. Facilitating fair competition
3. Accelerating the adoption of ISO GQL and SQL/PGQ



LDBC members
20 companies and organizations, including:



Social Network Benchmark:

● The data of the TTC 2018 “Social Media” case is a subset of the SNB.

The SNB has new and updated workloads:

● analytical: Business Intelligence workload v1
● transactional: Interactive workload v2

Rigorous auditing process that takes system costs (license and ownership) into account.

LDBC benchmarks



Conclusion



Conclusion
The TTC 2018 “Social Media” case:

● A cross-technology benchmark
● for incremental graph queries

Findings:

● Two simple graph queries can be challenging to formulate even non-incrementally
● DBMSs have performance issues for graph queries
● Explicit incremental evaluation is difficult
● Implicit incremental tools are superior
● → “retrofitted” incrementality has limited benefits



Ω



Finding: Lack of parallelization
Parallelization is paramount today: even laptop CPUs have 8–16 cores.

The initial evaluation is trivially parallelizable for both queries.

Observation:

● Only NMF, Differential Dataflow, and GraphBLAS support parallelization.
● EMF tools and databases (Neo4j, PostgreSQL) lack parallelization.



Some computations are difficult to express in a declarative language, e.g. the 
connected components algorithm

User-defined functions (UDFs) can be used to express these computations

● Common among EMF tools – Java/Xtend code operating on the EMF model
● Database systems like Spark/Databricks and Snowflake support Java UDFs

Incremental maintenance of UDFs is difficult

Finding: Importance of user-defined functions



We are comparing very different systems:

● EMF tools
● Neo4j – graph DBMS
● PostgreSQL – relational DBMS
● GraphBLAS – concurrent sparse linear algebra library written in C
● Differential Dataflow – dataflow library written in Rust

Reproducibility is also difficult:

● dockerized execution
● extensive CI tests
● benchmarking in standard cloud VMs

Finding: Fair benchmarking is difficult



Limitations of the benchmark



No delete operations

● Adding them to the data generator is difficult (GRADES-NDAʼ20 paper)

No (unweighted) shortest path queries

● Another important graph kernel, also challenging with deletes

See examples in the next slides.

Limitations
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Shortest paths with delete operations
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Shortest paths with delete operations
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Shortest paths with delete operations
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Ideas for incremental evaluation // 
Future work



The ideas in the following slides could work if all inserts are added one-by-one and 
there are not too many inserts. (There arenʼt, see the table with the model sizes.)

IIRC none of the solutions in the paper used this: they all went for a bulk insertion 
followed by a single recomputation step.

With a client-server setup, doing operations in bulk likely makes sense. Performing an 
individual maintenance operation per insert is likely expensive. With a read-oriented 
system (e.g. column store), it makes sense to perform the inserts in bulk.

Still, it would be interesting to give this a go with an embeddable database (e.g. 
DuckDB, Neo4j) or a system which provides an option to write stored procedure (like 
Oracleʼs PL/SQL).

Ideas for incremental evaluation
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Traversing the Submission tree

Score = 10 × #comments + #likes

Trick: For each Comment, store its root 
Post. When inserting a new child Comment, 
it should get its parentʼs root Post.

This works because the subgraph is a tree 
and there are no cut-and-link operations.



Scoring comments
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Trick: Upon adding a new “likes” or a new 
“friends” edge, connected components can 
only be merged together.

This works because there are no delete 
operations.
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Potential extensions to the slide deck
● concrete result slides
● details on SQL/PGQ WONTFIX
● model sizes
● incremental query formulation
● interesting findings
● more info on concrete tools

○ mention of DD & videos
○ mention of GraphBLAS
○ Hawk, NMF, YAMTL, etc.

● anything on DuckDB/DuckPGQ as a potential tool for Q1
● complaining that most MDE tools are single-threaded
● incremental tricks explained…



Incremental query formulation







Categories:

● Non-incremental: query is recomputed each time
● Implicitly implemental: the maintenance is done automatically by the system
● Explicitly incremental: the query developer manually incrementalizes the query 

(poor manʼs view maintenance, can be retrofitted to existing systems)

Studied in depth in database research
…but most research focused on equijoins
…maybe anti- and outer joins

Transitive reachability (tree queries, connected components, etc.) are less studied.

Incremental view maintenance





(1) AOF
(2) ATL (3) + Incremental
(4) Differential Dataflow
(5) GraphBLAS (6) + Incremental
(7) Hawk (8) + IU (9) + IUQ
(10) JastAdd
(11) Neo4j (12) + Incremental
(13) NMF (14) + Incremental
(15) PostgreSQL (16) + Incremental
(17) Xtend
(18) YAMTL (19) + II (20) + EI

All tools



Most tools use the EMF data model
(1) Active Operations Framework (AOF)
(2) ATL (3) + Incremental
(7) Hawk (8) + IU (9) + IUQ
(10) JastAdd
(17) Xtend
(18) YAMTL (19) + II (20) + EI

NMF:
(13) NMF (14) + Incremental

Relational:
(4) Differential Dataflow
(15) PostgreSQL (16) + Incremental

Property graph:
(11) Neo4j (12) + Incremental

Matrix:
(5) GraphBLAS (6) + Incremental



Draft
a very small benchmark suite, just two queries and a few transformations

already highlights numerous usability and performance characteristics of systems  !!

e.g. why donʼt MDE tools use relational DBMSs

discuss the two queries briefly

present a few solutions (e.g. Postgres/SQL; Neo4j/Cypher; MDE tools; differential 
dataflow, refer to Frank McSherryʼs video)



FMS videos
Live coding differential dataflow:

● https://www.youtube.com/watch?v=W6TKxS_pWr0 
● https://www.youtube.com/watch?v=83rG471bmw8 
● https://www.youtube.com/watch?v=uZ23MnpujNA 

https://www.youtube.com/watch?v=W6TKxS_pWr0
https://www.youtube.com/watch?v=83rG471bmw8
https://www.youtube.com/watch?v=uZ23MnpujNA
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Differential dataflow: CC computation

    likes                   // node    label   comment
        .filter(|_| false)
        .map(|(user, comm)| ((user.clone(), comm), user))
        .iterate(|labels| {

            let knows = knows.enter(&labels.scope());
            let likes = likes.enter(&labels.scope());

            labels
                .map(|((node, comment), label)| (node, (label, comment)))
                .join_map(&knows, |_node, (label, comment), dest| ((dest.clone(), comment.clone()), label.clone()))
                .concat(&likes.map(|(user, comm)| ((user.clone(), comm), user)))
                .reduce(|_key, input, output| {
                    // only produce output, if `input` contains `_key.0`
                    if input.iter().any(|(label,_wgt)| *label == &_key.0) {
                        output.push((input[0].0.clone(), 1));
                    }
                })
        });









Model sizes for each scale factor


