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MOTIVATION

= Graph algorithms are challenging to program

o irregular access patterns — poor locality
o caching and parallelization are difficult

= Optimizations often limit portability =
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= GraphBLAS introduces an abstraction layer o Te

using the language of linear algebra

o graph = sparse matrix
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GRAPHBLAS STACK

Graph analytical applications

Algorithm library

GraphBLAS C API

GraphBLAS implementation

Hardware architecture

_ application developers
and algorithm designers

| Sparse matrix experts
and hardware designers

—

Textbook algos: BFS, PageRank, triangle count  untyped graphs
GraphBLAS-based Cypher engine: RedisGraph  property graphs

RQ: How to formulate mixed workloads on property graphs?



SIGMOD 2014 PROGRAMMING CONTEST

Annual contest
= Teams compete on database-related programming tasks
= Highly-optimized C++ implementations

2014 event
= Tasks on the LDBC social network graph

o Benchmark data set for property graphs @
o People, forums, comments, hashtags, etc. LDBC

= 4 queries
o Mix of filtering operations and graph algorithms



https://ldbcouncil.org/
https://ldbcouncil.org/

QUERY TEMPLATE

. Compute an induced subgraph over Person-knows-Person
Il. Run the graph algorithm on the subgraph

| ( Create induced subgraph from (pA)-[:knOWS]-(pB).\

hasTag hasTag
> t: Tag <

name = $t

Forum Forum

hasMember hasMember

Y Y
pA: Person knows pB: Person

In the subgraph, compute the closeness centrality value
for each Person p, then return top-k Persons with the highest values.

Person

knows*

p: Person

0.67 0.80
| | [ exact closeness centrality]

key kernel: all-source BFS




OVERVIEW OF QUERIES 1, 2, 3

. Filter the induced subgraph(s)

For each Tag t, create an induced subgraph from (pA)-[:knows]-(pB).

> t: Tag €«
name
hasInterest hasInterest
pA: Person pB: Person
birthday = $d knows birthday = $d

Collect Person vertices who are located in/work/study in Place $p.1

Place
name = $p
- Y i AN ' \
isPartOf*0..2 isPartOf*0..1 isPartOf*0..2
I
City Country City
A A A
isLocatedIn isLocatedIn
Company University
A A
isLocatedIn workAt studyAt
Person Person Person
L located in $p| OR works in $p|  OR studies in $p|

Create induced subgraph from (p&)-[:knows]-(pB)
where countici) = $x and counti{cj) = £x.
i cuuntﬂci}i
i ci: Comment —i—replny—} Comment
L Fl
hasCreator ha 5Creatnrl
Y
pa: Person knows pB: Person
A
hasCreator hasCreator
[ I
Comment «—replyOf —  ¢j: Comment !
i I
i N
e count(cj))
Compute shortest path length in the subgraph between two Persons.
pl: Person knows* p2: Person
id=$pl id = $p2

[ unweighted shortest path }

For each t's subgraph, compute range(t) as the size of the Iargest\
connected component. Return the top-k tags based on their range.

knows* Person

Person

[ connected components ]

Il. Run the graph algorithm

Among p1l, p2 in the collected Persons, who are at most h steps awayﬁ
in the original graph, return the top-k (p1, p2) pairs based on count(t).

haslInterest hasinterest

count(t)

N o -

pl: Person knows*1..h p2: Person

[ pairwise reachability }




GRAPHBLAS SOLUTION OF THE QUERIES

* Loading includes relabelling UINT64 vertex IDs to a
contiguous sequence 0..N — 1.

= Filtering the induced subgraph from the property graph is
mostly straightforward and composable with the algorithms.

= The algorithms can be concisely expressed in GraphBLAS:
o Connected components vV — FastSV [Zhang et al., PPSC'20]
| o BFS v/ |
o Bidirectional BFS
| o All-source BFS + bitwise optimization |
o Multi-source bidirectional BFS



https://arxiv.org/pdf/1910.05971.pdf




BFS: BREADTH-FIRST SEARCH

frontii

1 2 Boolean
matrices
A 3 and vectors
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®: logical AND A LOR.LAND frontier seen LOR next



BFS: BREADTH-FIRST SEARCH

frontier
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All-source BFS



Q4: CLOSENESS CENTRALITY VALUES

Q4 computes the top-k Person vertices based on their exact
closeness centrality values:

(C(p) — 1)°
(n—1) - s(p)

CCV(p) =

where
= C(p) is the size of the connected component of vertex p,
= n is the number of vertices in the induced graph,

= s(p) is the sum of geodesic distances to all other reachable
persons from p.

s(p) is challenging: needs unweighted all-pairs shortest paths.



BOOLEAN ALL-SOURCE BFS ALGORITHM

Frontier t1 t2 t3 t4 t5 m

Seentl t2 t3 t4 t5
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BOOLEAN ALL-SOURCE BFS ALGORITHM

Frontiert!l t2 t3 t4 t5

Seentl t2 t3 t4 t5
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Bitwise all-source BFS



BITWISE ALL-SOURCE BFS ALGORITHM

= For large graphs, the all-source BFS algorithm might need
to run 500k+ traversals

= Two top-ranking teams used bitwise operations to process
traversals in batches of 64 [Then et al., VLDB'15]

* This idea can be adopted in the GraphBLAS algorithm by

o using UINT64 values

o performing the multiplication on the BOR.SECOND semiring,
where BOR is “bitwise or” and SECOND(x,y) =y

* 5-10x speedup compared to the Boolean all-source BFS


http://www.vldb.org/pvldb/vol8/p449-then.pdf

BITWISE ALL-SOURCE BFS ALGORITHM

_ Using UINT4s here
Frontier t1-t4 (5

1 2 @ |1000
210100
; 3 ® |eo10
@ 10001
® 1000
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BITWISE ALL-SOURCE BFS ALGORITHM

Seen t1-t4
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Bidirectional BFS



BIDIRECTIONAL BES Advance frontiers alternately

and intersect them
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Bidirectional MSBFS



BIDIRECTIONAL MSBFS ALGORITHM

= Pairwise reachability problem:
From a given set of k vertices, which pairs of vertices are
reachable from each other with at most h hops?

= Naive solution:
Run a k-source MSBFS for h steps and check reachability.
The frontiers get large as they grow exponentially.

= Better solution:
Advance all frontiers simultaneously for [h/2] iterations.
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BIDIRECTIONAL MSBFS:
PATHS OF LENGTH <4
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BIDIRECTIONAL MSBFS:
PATHS OF LENGTH 3
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Benchmark results



BENCHMARK RESULTS

= The top solution of AWFY vs. SuiteSparse:GraphBLAS v3.3.3
= AWFY’s solution uses SIMD instructions — difficult to port
» GraphBLAS load times are slow (see details in paper)
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DIRECTION-OPTIMIZING TRAVERSAL

= This is optimization is subject to future work.
= For low diameter graphs, it is worth to use push/pull phases

= Push/pull is simple to express in GraphBLAS
o See [Yang et al., ICPP'18]

= But deciding when to change is non-trivial

=



https://arxiv.org/pdf/1804.03327

SUMMARY

= An interesting case study, see technical report

» GraphBLAS can capture mixed workloads

o Induced subgraph computations are simple to express
o Algorithms are concise, bitwise optimizations can be adopted
o Performance is sometimes on par with specialized solutions

= Future optimizations
o Bitmap-based matrix/vector compression is WIP by Tim Davis

— =5x speedup without using bitwise operators in our code

Extended
GraphBLAS slide deck

@ sigmod2014-contest-graphblas



https://szarnyasg.github.io/sigmod2014-contest/ms.pdf
http://twitter.com/GraphBLAS
https://github.com/ldbc/sigmod2014-contest-graphblas
https://szarnyasg.github.io/sigmod2014-contest/ms.pdf
https://szarnyasg.github.io/sigmod2014-contest/ms.pdf




