
A GraphBLAS solution to the SIGMOD 2014 
Programming Contest using multi-source BFS

High-Performance Extreme Computing (HPEC) 2020

M. Elekes, A. Nagy, D. Sándor, J.B. Antal, T.A. Davis, G. Szárnyas



MOTIVATION

 Graph algorithms are challenging to program

o irregular access patterns → poor locality

o caching and parallelization are difficult

 Optimizations often limit portability

 GraphBLAS introduces an abstraction layer 
using the language of linear algebra

o graph ≡ sparse matrix

o navigation step ≡ matvec on semirings

≡
𝐀       















74

6

5

1 2

3



MOTIVATION

 Graph algorithms are challenging to program

o irregular access patterns → poor locality

o caching and parallelization are difficult

 Optimizations often limit portability

 GraphBLAS introduces an abstraction layer
using the language of linear algebra

o graph ≡ sparse matrix

o navigation step ≡ matvec on semirings

≡

      

𝐯

𝐀       















      

74

6

5

1 2

3



GRAPHBLAS STACK

Textbook algos: BFS, PageRank, triangle count untyped graphs

GraphBLAS-based Cypher engine: RedisGraph property graphs

RQ: How to formulate mixed workloads on property graphs?

GraphBLAS implementation

Graph analytical applications

Algorithm library

GraphBLAS C API

Hardware architecture

application developers 
and algorithm designers

sparse matrix experts
and hardware designers



SIGMOD 2014 PROGRAMMING CONTEST

Annual contest

 Teams compete on database-related programming tasks

 Highly-optimized C++ implementations

2014 event

 Tasks on the LDBC social network graph

o Benchmark data set for property graphs

o People, forums, comments, hashtags, etc.

 4 queries

oMix of filtering operations and graph algorithms

https://ldbcouncil.org/
https://ldbcouncil.org/


QUERY TEMPLATE

I. Compute an induced subgraph over Person-knows-Person

II. Run the graph algorithm on the subgraph

I. 

II.
0.80

0.80

0.67

0.67

0.67

exact closeness centrality
key kernel: all-source BFS



OVERVIEW OF QUERIES 1, 2, 3

I. Filter the induced subgraph(s)

II. Run the graph algorithm
pairwise reachability

unweighted shortest path connected components



GRAPHBLAS SOLUTION OF THE QUERIES

 Loading includes relabelling UINT64 vertex IDs to a 
contiguous sequence 0…𝑁 − 1.

 Filtering the induced subgraph from the property graph is 
mostly straightforward and composable with the algorithms.

 The algorithms can be concisely expressed in GraphBLAS:

o Connected components  → FastSV [Zhang et al., PPSC’20]

o BFS 

o Bidirectional BFS

o All-source BFS + bitwise optimization

oMulti-source bidirectional BFS

https://arxiv.org/pdf/1910.05971.pdf


BFS



BFS: BREADTH-FIRST SEARCH

𝐀     











𝐟𝐫𝐨𝐧𝐭𝐢𝐞𝐫
.
.
.
.
.

1 2

4 3

5

𝐬𝐞𝐞𝐧′
.
.
.
.
.

𝐬𝐞𝐞𝐧′ =
𝐬𝐞𝐞𝐧 LOR 𝐧𝐞𝐱𝐭

𝐧𝐞𝐱𝐭 ¬𝐬𝐞𝐞𝐧 =
𝐀 LOR . LAND 𝐟𝐫𝐨𝐧𝐭𝐢𝐞𝐫

Boolean 
matrices

and vectors

𝐬𝐞𝐞𝐧
.
.
.
.
.

¬𝐬𝐞𝐞𝐧 mask

⊕: logical OR
⊗: logical AND



BFS: BREADTH-FIRST SEARCH

𝐀     











𝐟𝐫𝐨𝐧𝐭𝐢𝐞𝐫
.
.
.
.
.

1 2

4 3

5

𝐬𝐞𝐞𝐧′
.
.
.
.
.

𝐬𝐞𝐞𝐧
.
.
.
.
.

mask prevents 
redundant

computations

𝐬𝐞𝐞𝐧′ =
𝐬𝐞𝐞𝐧 LOR 𝐧𝐞𝐱𝐭

𝐧𝐞𝐱𝐭 ¬𝐬𝐞𝐞𝐧 =
𝐀 LOR . LAND 𝐟𝐫𝐨𝐧𝐭𝐢𝐞𝐫



All-source BFS



Q4: CLOSENESS CENTRALITY VALUES

Q4 computes the top-k Person vertices based on their exact 
closeness centrality values:

𝐶𝐶𝑉 𝑝 =
𝐶 𝑝 − 1 2

𝑛 − 1 ⋅ 𝑠 𝑝

where

 𝐶 𝑝 is the size of the connected component of vertex 𝑝,

 𝑛 is the number of vertices in the induced graph,

 𝑠 𝑝 is the sum of geodesic distances to all other reachable 
persons from 𝑝.

𝑠 𝑝 is challenging: needs unweighted all-pairs shortest paths.



BOOLEAN ALL-SOURCE BFS ALGORITHM

𝐀     











𝐒𝐞𝐞𝐧′ t1 t2 t3 t4 t5

.
.
.
.
.

𝐅𝐫𝐨𝐧𝐭𝐢𝐞𝐫 t1 t2 t3 t4 t5

.
.
.
.
.

𝐍𝐞𝐱𝐭 ¬𝐒𝐞𝐞𝐧 =
𝐀 LOR . LAND 𝐅𝐫𝐨𝐧𝐭𝐢𝐞𝐫

𝐒𝐞𝐞𝐧′ =
𝐒𝐞𝐞𝐧 LOR 𝐍𝐞𝐱𝐭

𝐒𝐞𝐞𝐧 t1 t2 t3 t4 t5

.
.
.
.
.

traversals

1 2

4 3

5



BOOLEAN ALL-SOURCE BFS ALGORITHM

𝐀     











𝐅𝐫𝐨𝐧𝐭𝐢𝐞𝐫 t1 t2 t3 t4 t5

.
.
.
.
.

𝐒𝐞𝐞𝐧′ t1 t2 t3 t4 t5

.
.
.
.
.

𝐒𝐞𝐞𝐧 t1 t2 t3 t4 t5

.
.
.
.
.

1 2

4 3

5

𝐍𝐞𝐱𝐭 ¬𝐒𝐞𝐞𝐧 =
𝐀 LOR . LAND 𝐅𝐫𝐨𝐧𝐭𝐢𝐞𝐫

𝐒𝐞𝐞𝐧′ =
𝐒𝐞𝐞𝐧 LOR 𝐍𝐞𝐱𝐭



Bitwise all-source BFS



BITWISE ALL-SOURCE BFS ALGORITHM

 For large graphs, the all-source BFS algorithm might need 
to run 500k+ traversals

 Two top-ranking teams used bitwise operations to process 
traversals in batches of 64 [Then et al., VLDB’15]

 This idea can be adopted in the GraphBLAS algorithm by

o using UINT64 values

o performing the multiplication on the BOR . SECOND semiring, 
where BOR is “bitwise or” and SECOND 𝑥, 𝑦 = 𝑦

 5-10x speedup compared to the Boolean all-source BFS

http://www.vldb.org/pvldb/vol8/p449-then.pdf


BITWISE ALL-SOURCE BFS ALGORITHM

𝐅𝐫𝐨𝐧𝐭𝐢𝐞𝐫 t1-t4 t5

.1000 0000

.0100 0000

.0010 0000

.0001 0000

.0000 1000

0101 0000
1010 1000
0101 1000
1010 0000
0110 0000

1 2

4 3

5

𝐒𝐞𝐞𝐧′ t1-t4 t5

.0101 0000

.1010 1000

.0101 1000

.1010 0000

.0110 0000

𝐀     











𝐒𝐞𝐞𝐧′ =
𝐒𝐞𝐞𝐧 BOR 𝐍𝐞𝐱𝐭

𝐍𝐞𝐱𝐭 =
𝐀 BOR . SECOND 𝐅𝐫𝐨𝐧𝐭𝐢𝐞𝐫

𝐒𝐞𝐞𝐧 t1-t4 t5

.1000 0000

.0100 0000

.0010 0000

.0001 0000

.0000 1000

Using UINT4s here



BITWISE ALL-SOURCE BFS ALGORITHM

𝐅𝐫𝐨𝐧𝐭𝐢𝐞𝐫 t1-t4 t5

.0101 0000

.1010 1000

.0101 1000

.1010 0000

.0110 0000

0010 1000
0001 0000
1000 0000
0100 1000
1001 0000

1 2

4 3

5

𝐒𝐞𝐞𝐧′ t1-t4 t5

.1111 1000

.1111 1000

.1111 1000

.1111 1000

.1111 1000

𝐀     











𝐒𝐞𝐞𝐧 t1-t4 t5

.0101 0000

.1010 1000

.0101 1000

.1010 0000

.0110 0000

𝐒𝐞𝐞𝐧′ =
𝐒𝐞𝐞𝐧 BOR 𝐍𝐞𝐱𝐭

𝐍𝐞𝐱𝐭 =
𝐀 BOR . SECOND 𝐅𝐫𝐨𝐧𝐭𝐢𝐞𝐫

Full VLDB paper 
on this algorithm

vs.

9 GrB operations



Bidirectional BFS



BIDIRECTIONAL BFS Advance frontiers alternately
and intersect them

𝐀     











𝐟𝐫𝐨𝐧𝐭𝐢𝐞𝐫𝟏
.
.
.
.
.

1 2

4 3

5

𝐧𝐞𝐱𝐭𝟏

𝐀     











𝐟𝐫𝐨𝐧𝐭𝐢𝐞𝐫2
.
.
.
.
.

1 2

4 3

5

𝐧𝐞𝐱𝐭𝟐

∩ =

Length = 1 

𝐧𝐞𝐱𝐭𝟏 ∩ 𝐟𝐫𝐨𝐧𝐭𝐢𝐞𝐫𝟐

∩ =

Length = 2 

𝐧𝐞𝐱𝐭𝟏 ∩ 𝐧𝐞𝐱𝐭𝟐



Bidirectional MSBFS



BIDIRECTIONAL MSBFS ALGORITHM

 Pairwise reachability problem:
From a given set of 𝑘 vertices, which pairs of vertices are 
reachable from each other with at most ℎ hops?

 Naïve solution:
Run a 𝑘-source MSBFS for ℎ steps and check reachability.
The frontiers get large as they grow exponentially.

 Better solution:
Advance all frontiers simultaneously for ℎ/2 iterations.

2
3

4

5

61



BIDIRECTIONAL MSBFS 𝐀      













𝐅      

























𝐍𝐞𝐱𝐭[1] 𝐒𝐞𝐞𝐧[1]

𝐒[0]     













2 3

4

5
61

𝐒𝐞𝐞𝐧 1 : reachability with ≤1 hops



BIDIRECTIONAL MSBFS 𝐀      













𝐅      













𝐍𝐞𝐱𝐭[2] 𝐒𝐞𝐞𝐧 1













𝐒𝐞𝐞𝐧[2]

𝐒[1]     













2 3

4

5
61

𝐒𝐞𝐞𝐧 2 : reachability with ≤2 hops



BIDIRECTIONAL MSBFS:
PATHS OF LENGTH ≤4

     













     













To get paths of at most
4 hops, we compute

𝐒𝐞𝐞𝐧[2] LOR.LAND 𝐒𝐞𝐞𝐧 2 T

Here, we found paths 
between all pairs:
• from  to ,
• from  to ,
• from  to .

𝐒𝐞𝐞𝐧 2 T

𝐒𝐞𝐞𝐧[2] 

From vertex 5, we 
could get to these 

vertices with ≤2 hops

From vertex 1, we could get 
to these vertices with ≤2 hops

2 3

4

5
61



BIDIRECTIONAL MSBFS:
PATHS OF LENGTH 3      













     













2 3

4

5
61

To get exactly 3-length 
paths we compute

𝐍𝐞𝐱𝐭[1] LOR.LAND 𝐍𝐞𝐱𝐭 2 T

We found two 3-length 
paths:
• from  to 
• from  to .

𝐍𝐞𝐱𝐭[1]

𝐍𝐞𝐱𝐭 2 T

From vertex 5, we 
could get to these 
vertices with 1 hop

From vertex 1, we could get 
to this vertex with 2 hops



Benchmark results



BENCHMARK RESULTS

 The top solution of AWFY vs. SuiteSparse:GraphBLAS v3.3.3

 AWFY’s solution uses SIMD instructions → difficult to port

 GraphBLAS load times are slow (see details in paper)

Outliers

80 executions with 
different parameters



DIRECTION-OPTIMIZING TRAVERSAL

 This is optimization is subject to future work.

 For low diameter graphs, it is worth to use push/pull phases

 Push/pull is simple to express in GraphBLAS

o See [Yang et al., ICPP’18]

 But deciding when to change is non-trivial

push push pull

https://arxiv.org/pdf/1804.03327


SUMMARY

 An interesting case study, see technical report

 GraphBLAS can capture mixed workloads

o Induced subgraph computations are simple to express

o Algorithms are concise, bitwise optimizations can be adopted

o Performance is sometimes on par with specialized solutions

 Future optimizations

o Bitmap-based matrix/vector compression is WIP by Tim Davis 
→ ≈5× speedup without using bitwise operators in our code

GraphBLAS sigmod2014-contest-graphblas
Extended
slide deck

https://szarnyasg.github.io/sigmod2014-contest/ms.pdf
http://twitter.com/GraphBLAS
https://github.com/ldbc/sigmod2014-contest-graphblas
https://szarnyasg.github.io/sigmod2014-contest/ms.pdf
https://szarnyasg.github.io/sigmod2014-contest/ms.pdf


Ω


