A GraphBLAS solution to the SIGMOD 2014
Programming Contest using multi-source BFS

High-Performance Extreme Computing (HPEC) 2020

M. Elekes, A. Nagy, D. Sandor, J.B. Antal, T.A. Davis, G. Szarnyas

TEXAS A&M W
e o) SRS e UNIVERSIT Y.
MUEGYETEM 1782

MOTIVATION

= Graph algorithms are challenging to program

o irregular access patterns — poor locality
o caching and parallelization are difficult

= Optimizations often limit portability =
OROROROROROCRO,

= GraphBLAS introduces an abstraction layer o Te

using the language of linear algebra

o graph = sparse matrix

QOO®OEO »
o

o havigation step = matvec on semirings

MOTIVATION

= Graph algorithms are challenging to

program

o irregular access patterns — poor locality

o caching and parallelization are difficult

= Optimizations often limit portability

= GraphBLAS introduces an abstraction layer

using the language of linear algebra
o graph = sparse matrix
o nhavigation step = matvec on semirings

OO B®O®O

QOO®OEO »

ODDBB®O®

o

o

vl

@| |O|®

T DQO®O GO

GRAPHBLAS STACK

Graph analytical applications

Algorithm library

GraphBLAS C API

GraphBLAS implementation

Hardware architecture

_ application developers
and algorithm designers

| Sparse matrix experts
and hardware designers

—

Textbook algos: BFS, PageRank, triangle count untyped graphs
GraphBLAS-based Cypher engine: RedisGraph property graphs

RQ: How to formulate mixed workloads on property graphs?

SIGMOD 2014 PROGRAMMING CONTEST

Annual contest
= Teams compete on database-related programming tasks
= Highly-optimized C++ implementations

2014 event
= Tasks on the LDBC social network graph

o Benchmark data set for property graphs @
o People, forums, comments, hashtags, etc. LDBC

= 4 queries
o Mix of filtering operations and graph algorithms

https://ldbcouncil.org/
https://ldbcouncil.org/

QUERY TEMPLATE

. Compute an induced subgraph over Person-knows-Person
Il. Run the graph algorithm on the subgraph

| (Create induced subgraph from (pA)-[:knOWS]-(pB).\

hasTag hasTag
> t: Tag <

name = $t

Forum Forum

hasMember hasMember

Y Y
pA: Person knows pB: Person

In the subgraph, compute the closeness centrality value
for each Person p, then return top-k Persons with the highest values.

Person

knows*

p: Person

0.67 0.80
| | [exact closeness centrality]

key kernel: all-source BFS

OVERVIEW OF QUERIES 1, 2, 3

. Filter the induced subgraph(s)

For each Tag t, create an induced subgraph from (pA)-[:knows]-(pB).

> t: Tag €«
name
hasInterest hasInterest
pA: Person pB: Person
birthday = $d knows birthday = $d

Collect Person vertices who are located in/work/study in Place $p.1

Place
name = $p
- Y i AN ' \
isPartOf*0..2 isPartOf*0..1 isPartOf*0..2
I
City Country City
A A A
isLocatedIn isLocatedIn
Company University
A A
isLocatedIn workAt studyAt
Person Person Person
L located in $p| OR works in $p| OR studies in $p|

Create induced subgraph from (p&)-[:knows]-(pB)
where countici) = $x and counti{cj) = £x.
i cuuntﬂci}i
i ci: Comment —i—replny—} Comment
L Fl
hasCreator ha 5Creatnrl
Y
pa: Person knows pB: Person
A
hasCreator hasCreator
[I
Comment «—replyOf — ¢j: Comment !
i I
i N
e count(cj))
Compute shortest path length in the subgraph between two Persons.
pl: Person knows* p2: Person
id=$pl id = $p2

[unweighted shortest path }

For each t's subgraph, compute range(t) as the size of the Iargest\
connected component. Return the top-k tags based on their range.

knows* Person

Person

[connected components]

Il. Run the graph algorithm

Among p1l, p2 in the collected Persons, who are at most h steps awayﬁ
in the original graph, return the top-k (p1, p2) pairs based on count(t).

haslInterest hasinterest

count(t)

N o -

pl: Person knows*1..h p2: Person

[pairwise reachability }

GRAPHBLAS SOLUTION OF THE QUERIES

* Loading includes relabelling UINT64 vertex IDs to a
contiguous sequence 0..N — 1.

= Filtering the induced subgraph from the property graph is
mostly straightforward and composable with the algorithms.

= The algorithms can be concisely expressed in GraphBLAS:
o Connected components vV — FastSV [Zhang et al., PPSC'20]
| o BFS v/ |
o Bidirectional BFS
| o All-source BFS + bitwise optimization |
o Multi-source bidirectional BFS

https://arxiv.org/pdf/1910.05971.pdf

BFS: BREADTH-FIRST SEARCH

frontii

1 2 Boolean
matrices
A 3 and vectors

~

SEEL‘ A Seel
®|0 Q) oo
© ® oo
©) ©) :> O

@ @ @|o
® | | eole® | o[

@: logical OR next(—seen) = seen’ =
®: logical AND A LOR.LAND frontier seen LOR next

BFS: BREADTH-FIRST SEARCH

frontier
1 2 ©
@
i 3: © mask prevents
ng 3 @ redundapt
@ computations
seen ADOO®OG
®|O ® ® ®
@10 @|@® ® ®
©), ©), o oo
@ |0 Ol ®
@ _| ® oo
next(—seen) = seen’ =

A LOR.LAND frontier seen LOR next

All-source BFS

Q4: CLOSENESS CENTRALITY VALUES

Q4 computes the top-k Person vertices based on their exact
closeness centrality values:

(C(p) — 1)°
(n—1) - s(p)

CCV(p) =

where
= C(p) is the size of the connected component of vertex p,
= n is the number of vertices in the induced graph,

= s(p) is the sum of geodesic distances to all other reachable
persons from p.

s(p) is challenging: needs unweighted all-pairs shortest paths.

BOOLEAN ALL-SOURCE BFS ALGORITHM

Frontier t1 t2 t3 t4 t5 m

Seentl t2 t3 t4 t5

©® OO

©®O =

O
@ |@
€) ®
@
®
OO0 ®O
® ® O
® ® ®| |O O
® ® o O
® ® O O
® o OO

Next(—Seen) =

Seen’ t1 t2 t3 t4 t5

—

A LOR.LAND Frontier

©® 0o

® O O
O ®| O O
O @® 0|0
O O ®
O|O o
Seen’ =

Seen LOR Next

BOOLEAN ALL-SOURCE BFS ALGORITHM

Frontiert!l t2 t3 t4 t5

Seentl t2 t3 t4 t5

©® OO

® O O
© @0 O
C @ 0|0
O ONN
OO o

©® O =

@ ® o
@|® o o
® ® ® o
@|® o
®| 0 e
OO0 ®O
® ® O O
® ® ® O
® ® ®| O
® ® O O
® o O O

Next(—Seen) =

A LOR.LAND Frontier

~—t
~

OO @O|I0|K
O @® 0|00
® OO0 |I0|x

Seen’ =
Seen LOR Next

Bitwise all-source BFS

BITWISE ALL-SOURCE BFS ALGORITHM

= For large graphs, the all-source BFS algorithm might need
to run 500k+ traversals

= Two top-ranking teams used bitwise operations to process
traversals in batches of 64 [Then et al., VLDB'15]

* This idea can be adopted in the GraphBLAS algorithm by

o using UINT64 values

o performing the multiplication on the BOR.SECOND semiring,
where BOR is “bitwise or” and SECOND(x,y) =y

* 5-10x speedup compared to the Boolean all-source BFS

http://www.vldb.org/pvldb/vol8/p449-then.pdf

BITWISE ALL-SOURCE BFS ALGORITHM

_ Using UINT4s here
Frontier t1-t4 (5

1 2 @ |1000
210100
; 3 ® |eo10
@ 10001
® 1000
Seen t1-t4 t5 ADQOB®OG Seen’ t1-t4 5
® 11000 ® @ @ 9101 ® 0101
2 10100 @|® @ ® 1910|1000 @ 11010|1000
3 10010 ©) @ ® @®| |0101(1000 ‘ 3101011000
@ 10001 @|® @ 1010 @ 11010
® 1000 ® ® o 9110 ® 10110
Next = Seen’ =
A BOR.SECOND Frontier Seen BOR Next

BITWISE ALL-SOURCE BFS ALGORITHM

Seen t1-t4

©® OO

t5

0101

1010

1000

0101

1000

1010

0110

©® O =

S

Frontier t1-t4

©

@

©® OO

t5

0101

1010

1000

0101

1000

1010

0110

o|®

®|®

0010

1000

0001

1000

0100

1000

1001

Next =
A BOR .SECOND Frontier

Full VLDB paper
on this algorithm

VS.

9 GrB operations

t5

1000

1000

1000

1000

©® O
=
=
=
=

1000

Seen’ =

Seen BOR Next

Bidirectional BFS

BIDIRECTIONAL BES Advance frontiers alternately

and intersect them

Length=1 x
frontierl frontier2 lleX_tl N Eonti_erz
O] @D
©) ! @ oln| [=
© ©
3 @ 4 @ O
® ®le O
ADODOB®O — ADODOB®O — —
o[Te] Te]] [X] of Tel o] | [— —
@|® ® ® |O @|® ® ® |® () () @
ol |® |®@® e @ @ e @ n|@|=
@le| |@ O @le| |@ o
G o _ ®| ele®] L1 [
next1 next2 Length=2 v

nextl N next2

Bidirectional MSBFS

BIDIRECTIONAL MSBFS ALGORITHM

= Pairwise reachability problem:
From a given set of k vertices, which pairs of vertices are
reachable from each other with at most h hops?

= Naive solution:
Run a k-source MSBFS for h steps and check reachability.
The frontiers get large as they grow exponentially.

= Better solution:
Advance all frontiers simultaneously for [h/2] iterations.

BIDIRECTIONALMSBFS A ©®0 ® O ®OS[0]V @O ® © ®
® ® D|®
Seen[1]: reachability with <1 hops ole ° o
5 ® e |eo|e® ©
—2 9‘ O @ o [ojo|®
(4 ® oo ® o
® ® ® O
F O3 ® 06 ®
OlK @ Dle®| @
@ @
© ©
@ @
® @ ® o ® CRNC RN
® @ ® ® @ o
Next[1 Seen|1

BIDIRECTIONALMSBFS A Q@0 ® O ©§[1]|O @O0 ® O ®
® o Ol 3K
Seen[2]: reachability with <2 hops ole ° o
> | e |eje®| |O®
—2 9‘ O @ o [ojo|®
(4 ® oo ® N
® o ® o ®
F O 203 ® 06 ®
@ ® ® OJL 2K 2K
@ @
® ®
@ @
® o ® 0
© ® ® ® oo (o
Next[2](Seen|[1]) Seen|?2]

BIDIRECTIONAL MSBFS:
PATHS OF LENGTH <4

Seen|2]

Q)
@
€)
O,
®
®

Seen[2]"
® From vertex 1, we could get
® to these vertices with <2 hops
€)
@ ® o] To getpaths of at most
® ® 4 hops, we compute
® ®
ONONONONONG) Seen[2] LOR.LAND Seen|[2]'
® O oo
A Here, we found paths
0 eSE between all pairs:
S oJo e from®to®,
e from ® to ®,
= ® . from®to®.
®| |0 ®

BIDIRECTIONAL MSBFS:
PATHS OF LENGTH 3

5
1 99‘ 6
(4

From vertex 1, we could get
to this vertex with 2 hops

To get exactly 3-length
paths we compute

©0O®0

Next[ll o @ @ @ ® ® Next[1] LOR.LAND Next[2]”
°

om verte : We found two 3-length
et to these paths:

ertice oJo « from®to ®

« from ® to ®,

CECECKCKSRS,

Benchmark results

BENCHMARK RESULTS

= The top solution of AWFY vs. SuiteSparse:GraphBLAS v3.3.3
= AWFY’s solution uses SIMD instructions — difficult to port
» GraphBLAS load times are slow (see details in paper)

:
0.1
0.01
0.001

Execution time [S]

0.0001 !
80 executions with
different parameters

Q1

—
o
T

1..

10

1€

Q2

)

Q3
100}:_-
104
1
0.1

tool [l Awry [Bl| GraphBLAS

DIRECTION-OPTIMIZING TRAVERSAL

= This is optimization is subject to future work.
= For low diameter graphs, it is worth to use push/pull phases

= Push/pull is simple to express in GraphBLAS
o See [Yang et al., ICPP'18]

= But deciding when to change is non-trivial

=

https://arxiv.org/pdf/1804.03327

SUMMARY

= An interesting case study, see technical report

» GraphBLAS can capture mixed workloads

o Induced subgraph computations are simple to express
o Algorithms are concise, bitwise optimizations can be adopted
o Performance is sometimes on par with specialized solutions

= Future optimizations
o Bitmap-based matrix/vector compression is WIP by Tim Davis

— =5x speedup without using bitwise operators in our code

Extended
GraphBLAS slide deck

@ sigmod2014-contest-graphblas

https://szarnyasg.github.io/sigmod2014-contest/ms.pdf
http://twitter.com/GraphBLAS
https://github.com/ldbc/sigmod2014-contest-graphblas
https://szarnyasg.github.io/sigmod2014-contest/ms.pdf
https://szarnyasg.github.io/sigmod2014-contest/ms.pdf

