Budapest Data+ML Forum 2025-006-16

DuckDB: From Research Project
to Enterprise Database System

Gabor Szarnyas O DuckDB Labs

Deep dive

What's
new?

4
L 4

[|
|
1
1
1
|
n

q
24
Y4

'f
2 4

e

Wrapping up

e

' Wrapping up

[|
|
1
1
1
|
n

q
24

’l
U 4
O~

Deep dive

Q DUckDB

Modern SQL database for analytics

0
9
Y—
5
—

@ Rijden de Treinen

N A

K1 N

e Train archive
Large dataset with all train services that are stored in the train archive
(since 2019).

$ wget https://blobs.duckdb.org/trains-2025-feb.csv.qgz
$ gunzip trains-2025-feb.csv.gz
$ head -n 2 trains-2025-feb.csv

1d,date,service_type,company,train_number, ...
15277134,2025-02-01,Intercity, NS, 1410,...

$./favorite database

CREATE TABLE services (
1id BIGINT,
date DATE,
service_type VARCHAR,
company VARCHAR,
train_number BIGINT,

COPY services FROM
(HEADER true, DELIMITER)

SELECT

station,

avg(delay) AS avg_delay
FROM services
WHERE strftime(. date) IN (
GROUP BY station
ORDER BY avg_delay DESC
LIMIT 3;

Siegburg/Bonn 5.58
Emmerich-Elten 5.97
Brussel-Zuld 5.86

I

[0)
X
=
O
(=)
N
Q
=
8
—

$ duckdb

SELECT
station,
avg(delay) AS avg_delay

FROM
WHERE strftime(
GROUP BY station

ORDER BY avg_delay DESC
LIMIT 3;

- date) IN (

1. fetch from https

2. decompress

3. auto-detect schema

Siegburg/Bonn 5.58
Emmerich-Elten 5.97
Brussel-Zuid 3.86

4. load

Binary files

$ duckdb

SELECT
station,
avg(delay) AS avg_delay
FROM
WHERE strftime(. date) IN (,

GROUP BY station
ORDER BY avg_delay DESC
LIMIT 3;

Siegburg/Bonn 5.58
Emmerich-Elten 5.97
Brussel-Zuild 5.86

(1 second)

Database

* The worst delay in Amsterdam Centraal is almost 3 hours!

SELECT date, train_number, delay
FROM services
WHERE date =

AND station =

AND traln_number = 420;

f Change the train's number!

UPDATE services
SET train_number =

train_number + (random() * 100 + 1)::INT
WHERE delay > 150;

(23 rows updated)

SELECT date, train_number, delay
FROM services
WHERE date = '2025-02-27"
AND station = 'Amsterdam Centraal'
AND traln_number = 420;

® rows

Text files

Text files (deluxe)

Binary files

Database

e

' Wrapping up

[|
|
1
1
1
|
n

q
24

’l
U 4
O~

Deep dive

Text files

Database

3{7 A"‘

HERS
) 3% %
Yy
Bt SR 5 g
g -
B

INsight #1:
“Big Data” Is overrated

Data processing landscape, ~2008

Lots of data Weak hardware Inefficient software

[1]1]]100.0%] [0.0%]
[0.0%] [0.0%]
[0.0%] [0.0%]
[0.0%] [0.0%]

[I]] 362M/27.46G]

Data processing landscape, ~2018

Lots of data Strong hardware New techniques
but most queries
only access a small amount

columnar storage

vectorization

compression

INsight #2:
v Target data science workloads

!l pandas

data.tables

data size

Resistance: Why use a database?

ap / -
Expensive Difficult Unfriendly
to operate Interface

$ wget https://blobs.duckdb.org/trains-2025-feb.csv.qgz
$ gunzip trains-2025-feb.csv.gz
$./favorite_database

CREATE TABLE services (...):
COPY services FROM (...):
SELECT ...;

INsight #3:
Focus on usability

End-to-end performance

setup define schema m write queries run queries

End-to-end performance

setup define schema m write queries run queries

In-process architecture

client app

DuckDB clients

ﬁ pip install duckdb —:Go m @ G
@ curl https://install.duckdb.org | sh < @ R @

g ’
“

End-to-end performance

setup define schema m write queries run queries

Friendly SQL

SELECT
_ date,
avg(delay),
- min(delay),

FROM 'https://blobs.duckdb.org/trains-2025-feb.csv.gz'

GROUP BY ALL;

Q@ DuckoB < databricks iz snowilake el o0de

h» Big Query
2022 2023 2023 2024

pandas integration

import duckdb
import pandas as pd

my_df)= pd.DataFrame \
.from_dict({'a': [42, 43]})

Zero-copy
aCcCess

res = duckdb \

.sqL((my_df))

res.df ()

Replacement scan
Hlpandas

Python UDFs

import duckdb
from faker import Faker

def get_random_name():
return Faker().name()

duckdb.create function(
, get_random_name, [],
duckdb.typing.VARCHAR

def get_random_name()

)

duckdb.sql((random_name ())") \

. fetchall()

Origin
story
(=

Deep dive

’l
U 4
O~

4

4
4
[|
|
1
1
1
|
n

4

e

Wrapping up

Storage and execution

date station delay

Delft

Breda

row-based storage

date station delay

row-based storage

date station delay

o] oo | o0 o o | 00

column-based storage

date

Feb 15

Feb 15

Feb 15

Feb 15

station

Delft

Breda

delay

column-based storage

date station delay

2 [[))

column-based storage

date station delay

column-based storage

date station delay

“aate

date station delay

m “ result Simple but inefficient

date avg delay

Feb 15 Reads more data

than necessary

Feb 16

Feb 23

Not CPU-friendly

Column-based execution

date station delay

thread 1

Feb 15 Delft

Feb 15 result

Feb 15 Breda

Feb 15 Delft

Feb 16 Utrecht 2.5

Feb 16 Gouda
Feb 16

3

~

Feb 23 Delft

date station delay

thread 1
Feb 15

Feb 15 result

Feb 15

Feb 15

Feb 16

Feb 16

Feb 16

W
~

: S
ol

Feb 23

date station delay

thread 1

Feb 15
result
Feb 15
Feb 15

Feb 15
Feb 16 2.5

Feb 16

Feb 16

Feb 23 3.7

date station delay

thread 1

result
date avg delay
Feb 15
Feb 16

Feb 23

Simple but prone to OOM

date station delay thread 1
_Fevts | oam | o0 L1 cache
e | o
o
16
_Fevts | Gowa | 00 S
e | oo

date station delay thread 1
00 L1 cache
00
00
s
thread 2
00 e

date station delay thread 1
Feb 15 “ L1 cache
Feb15 | 00
Feb15 00
Feb 15
thread 2
2.5 L1 cache

date station delay thread 1

L1 cache

Feb 15

Feb 15

1.6

thread 2

L1 cache

Vectorized execution Q What is the average delay per day?

date station delay thread 1
L1 cache
Feb 15
Feb 15
thread 2

L1 cache

Feb 16

Feb 23

Vectorized execution

date station delay thread 1

L1 cache

Prefetch-friendly

thread 2
Parallelism-friendly

Cache-friendly

@ Lightweight indexing

q Which stations are affected by delays > 2 min?

date

row group 1

station

station

delay

row group 2

date station delay

__lv

date station delay

L1

[L1

DuckDB in the cloud

Which stations have
delays > 2 min?

SELECT date, station, delay
FROM
WHERE delay 2

Which stations have

delays > 2 min?

row group 1 row group 2

date station delay date station delay

—
v

date station delay

I]

dat station

Deep dive

4
L 4

e

Wrapping up

DuckDB: From Research Project
to Enterprise Database System

30k GitHub stars

=2 3M website visitors / month

20M Python installs / month

o Released v1.0 last summer

®: Community extensions

1 Published the DuckDB Ul

u Lots of performance optimizations

D |v| v InstantsQL

1 SELECT

2 date,

3 train_number,

4 delay,

5 FROM services

6 WHERE station = |'"Amsterdam Centraal'
-

= Showing preview results

7) date 123 train_number 123 delay
2025-02-01 1410 S
2025-02-01 701406 2
2025-02-01 1413 0

2025-02-01 1409 0

TPC-H scalability with DuckDB

11B 10 TB

Raspberry Pi MacBook Pro AWS EC2 instance
16 GB RAM 128 GB RAM 1.5 TB RAM

Text files

Text files (deluxe)

Binary files

Database

Data lake

Disaggregated storage (2005-)

-

@ storage layer object storage

I, compute layer

iImmutable files

Data lake architecture (2015-)

multi-engine stack

Bl storage over

L‘m compute layer

Data lake

Lakehouse

Data lake file formats

Apache

nual

/\ DELTA LAKE ICEBERG{J Y\

Transactional updates Performance issues

Time travel queries “Small files” problem

Schema evolution Limited to a single table

ICEBERG{}

catalog layer
(database)

A A

metadata layer
(Json + avro)

N A

data layer
(parquet)

\
N A N
Q . Q

® puckLake

catalog layer
(database)

metadata layer
(database)

data layer
(parquet)

Transactional updates
Time travel queries

Schema evolution

Lightweight snapshots
Multi-table ACID

High performance

Data inlining

Data lake support in DuckDB

ICEBERG

DELTA

® puckLake

ATTACH AS trailns;
USE trains;

CREATE TABLE services AS
FROM ;

f Adjust the train's number!

® puckLake

UPDATE services

SET traln_number =
train_number + (random() * 100 + 1)::INT

WHERE delay > 150;

SELECT snapshot_1id, changes
FROM ducklake_snapshots()

snapshot_1id changes
inté4 map(varchar, varchar([])

{schemas_created=[main]}
{tables_created=[main.services], tables_inserted_into=[1]}

{tables_inserted_into=[1], tables_deleted_from=[1]}

SELECT date, train_number, delay

FROM services|{AT (VERSION => 1)

WHERE date =
AND station =
AND traln_number = 420;

DuckLake client 1

database DuckLake client 2

DuckLake client 3

object storage
(e.g., AWS S3)

® puckLake

New kind of data architectures
No huge DuckDB file
Deletes can be faster

DuckLake 0.2 can directly import Parquet files

Deep dive

’l
U 4
O~

4

4
4
[|
|
1
1
1
|
n

4

%

Q0

Wrapping up

INg

source fund

icp

latforms
LLMs are everywhere

W o
o O
O LLI

Edit <> Code ~

=) Minor fixes #15715

xd - Mytherin merged 3 commits into duckdb:main from Mytherin:secret (Y on Jan 14

L) Conversation 0 -O- Commits 3]l Checks 47 *) Files changed 3 +58 -23 HINEN
4l Changes from all commits v File filter v Conversations v {63+ 0/ 3 files viewed Review in codespace
Q_ Filter changed files 21 m

Viewed [J -

v BB src/include/duckdb/main src/include/duckdb/main/extension_entries.hpp (&

[J extension_entries.hpp [¢

N .
vy 3 EEN tools/shell/include/shell_state.h Viewed
v BB tools/shell v - PP =
U _
v @@ include @@ -119,6 +119,8 @@ struct Shel te {
119 119 char thousand_separator = '
[shell_state.hpp : 120 120 //! When to use formatting arge numbers (in DuckBox mode)
0 shell.cpp - 121 121 LargeNumberRendering large r_rendering =
LargeNumberRendering: :DEFAULT;
122 + //' The command to execute when "—-ui’ is passed in
123 + string ui_command = "CALL start_ui()";
122 124

123 125 public:

